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Consider the contextual bandit
problem

e Suppose features (X)), actions (A,), and outcomes (Y)) are
observed sequentially

e At each time step 7, the analyst chooses P (At = al|X, ?/t_l)
for each a in a finite action space & given a pooled history
_ ~1
o1 = (X, A Yoy
e Denoting Y,(a) as the potential outcome had action a been
chosen at time step 7, we assume that

iid
(X, YD), ... YK}y ~ P
* We summarize the joint distribution at time step f z

(X,A,Y)~p (ylx,a) P (At =alX, ?’/t_l)p(x)



Even In the well-specified linear case,
adaptive data collection can make

Inference difficult

Suppose that
Y =0'Z

where

€

e Z = ¢(X,A,) for some feature map ¢ : RP X & — R

* ¢,is a random variable such that

2 2
_[€t ‘ %l‘—l] — O
Fact (Lai and Weli, 1982)

_[Gt‘ %t—l] =0,

A sufficient condition for the OLS estimate 6 to be asymptotically normal is for
there to exist a sequence of positive definite matrices { Br}7._; such that

T
Bi' Y 7zl > 1,
=1

This often will not be satisfied in bandit settings



This condition is often not obtained in bandit
problems where the difference in expected
rewards across arms IS zero

Example
Let A, € {0,1} with E[Y,]|A, = 1] = E[Y,|A, = 0]

In this setup, Zhang et al. (2020) demonstrate that the OLS estimator will be
non-Gaussian when data is collected using standard bandit algorithms such
as epsilon-greedy, Thompson sampling, and UCB.

This is a well studied problem in the literature. Some
solutions include:

e Estimating @ across batches with the batch size tending to oo
(Zhang et al., 2020).

* Adding bias correction term when estimating ( (Deshpande et
al., 2018; Khamaru et al., 2023)

But all approaches still assume the linear model is true



What can be said for generic M
(and Z)- estimators

This is a less studied problem in the literature.

Zhang et al. (2021) attempt to cover a target parameter that exists
only when the conditional mean under the working model is
correctly specified. That is,

0* = argmax,_.E [my(X, A, Y)|A, X/ forallA, e &, X, e R.
* In a parallel work to our own, Guo and Xu (2025) cover separate
{67} .., that solve for the roots

O=E [m@;(Xt, Yt(a))] forallr € [T]

Their work does allow for model misspecification, but:

o Assumes that the policy P(A, = a | X,, #',_,) converges to a
deterministic function independent of history.

e Does not allow for a model with a lower-dimensional 8* that is
defined across actions.



What target makes sense under
misspecification?

Our Choice: 0™ := argmax,_gE s A~z [mH(X,A, Y)]

The evaluation policy 7, (a|x) is a choice of density that is
independent of history.

If the policy converges, letting
(A, =alX):=1mPA =al|X, #,_,) is perfectly sensible.

[— 00

If the policy does not converge (e.g. multi-armed bandits when expected
rewards across arms is comparable), it an interpretative choice. Some
examples:

e Uniform over the action space;
* Weighting certain actions based on prior assumptions about efficacy’

e Using some known deployment policy.



Choice of evaluation policy is crucial for
model interpretation when it is misspecified

Assume Y, ~ N(6AZ 1) but we erroneously assume a linear model
e Policy |:p,(a|x) is uniform over {0,0.1,0.2,0.3,0.4,0.5}
e Policy 2: p,(a|x) is uniform over {0.6,0.7,0.8,0.9,1.0}

Correct Specification
Let mg — (Yt — HO — HlAtz)z
0 = 0 and 6 = 6 under both policies

Misspecification -—/

— _ _ 2 /4
Let my = (¥, = 0p = 014,) .~ — Correctly Specified
Policy 1: (98( = — (0.2 and (91* =4 Misspecified (Policy 1)
’ - Misspecified (Policy 2
Policy 2: 0 = — 5.3 and 0 = 15 sspectied (Folley2)




Let us first consider a naive estimator

T
Let us consider éo = argmaxez wmy(X, A, Y).

\ t 1 ’
* 4
* L 4
0‘ .0

‘0 ’0‘
Assume that 6’0 corresponds to the Assume O corresponds to the
solution to the estimating equation root of 0 = [EAN% [rifl@(X,A, Y)]

T
O — Z th(gme(Xt, At’ Yl‘)
=1

Generic Strategy

I
|. Show — Z Wi, gu(X,, Ay Y)) 5 N(0,7;) using martingale CLT

VT iS5
2. Taylor expand around this quantity to form a confidence ellipsoid center at 8*
3. Prove 6, > 6 to allow for plug-ins




Proving a martingale CLT is non-trivial
In the misspecified, adaptive setting

Desi d erata: % ZT: Wit (X A Y) S N(O.L)

|. Martingale Difference Sequence Both

Fort € [T], E [th.’lg*(Xp Ata Yt) | %t—ll — O E :::jlfcl)ogfl
E under
e, . Mmisspecificat
— Z E [cthzme*(X,A, Y)rig.(X,A,Y) c| ?’/t_l] 5 o - ion+
=1 . adaptivity
for some fixed o~ :

3. Asymptotic Negligibility
1
T

. 2. Conditional Variance Converges

T
. . pP
Y E [cwamg*(X,A, Y )itge(X, A, V)Tl ovapsel %H] 20
=1



Controlling the first moment requires
Inverse propensity weighting

Assume that w, € o(#,_{, X))

E [witge(X, A Y) | 7,1] = E [ [wiinga(X, A, Y)1 X, A, 7] | 7,

= Wt|E [n’tg*(X,, At, Yt) |Xt, At] | %t—ll

(but E [ri1y.(X,, A, Y) | X, A] =0
under correct specification)

SolE [wtrift@*(Xt, A,Y)] %t_l] = O forallw, € 6(#,_,, X,) when model is
correctly specified

pe(At — alX[)
P (At =d | %I—I’Xt)

If the model is misspecified, pick w, = . Then,

A =alX
P4, %) Mmo«(X Ap Y) | X A 0, | | Z i | = [EA/‘% [me*(Xt’ Ap Yt)]
P (At = d | %I—I’Xt)

=0




Controlling the second moment
requires square root IPW-weighting

On the other hand, E [wtzmg*(X,A, Y)rig.(X, A, Y)!| %,_1] may also be quite
unstable in bandit settings under a non-converging policy.

If w, has not already been used to control the first moment, we can simply let

1/2
P(A;, =alX)
Wt (P(At=a|%[—laxt)> ( ang eta I O )

! 1 <& pSA, =alX)

1
— Y E (Wi (X, A, V)i X, A Y% _|==) E
Tgf [r 0 0\ Ap Ap Iy tl] TZ} P(A=al#, .X)

Hig(X, A, Yring(X,, A, Y| % ,_,

1 T
T D Eur [11g:(X, A, Y yritgu(X,, A, YT |

=1

=[Ey .y, [’”’"le*(X,A, Y)nig(X;, A, Y, Z)T]

... but this is only a tractable strategy under correct

specification.



Controlling the first two moments simultaneously
requires additional free parameters

Consider nested filtrations

U(Zt—l) C 6(%t719Xt) Co(#, 1,X,A,) Co(#,_)

L 4

v
Choose 2, € o(#,_;)
to stabilize the
variance

Choose w, € o(X,, #,_;) to
ensure the score function is
a MDS (i.e. control first
moment)



This is a viable strategy if we can
estimate the time-varying variance well

pe(At — CllXt)
P (At =da | %I—I’Xt>

Letw, =

Let X, be an estimate of E [st,g*sfg* | %H] fors, g := wiitg(X,, A, 1))
Checking first condition...
E[Z; 125, 00 | #,_1] = Z7VPELs, 9o | # ]
= 37 12F [[E (Wiitg(X,s Ay Y | X,y Ay F,_| %,_1]
_ SRR, [ (XA )]

=0

Checking second condition...
T

I . 1 ) )
T 2 E[2; 1/2St,9*Sz,T9*2t ] = T 2 2 1/2[E[St,9*st,Te* |12

=1 =1

1 < (assuming sufficientl d
o —12y yv—1/2 g y goo
=T Z 22y estimate...)
=1

~ 1



Our final estimator also allows for the use
of flexible ML to reduce variance further

We define the MAIPWM (misspecified augmented inverse propensity
weighted M-) estimator as

T K
Or = argmax,_q Z Z (A =a |Xt)<m9(a,Xt, Jla, X))+ 1, -,

=1 a=1

m@(At, Xp Yt) - mH(Xp At’ ﬁ(Xta A;))
P (A= alX, 7,.)

where f, : R X & is trained only on #Z,_; and targets conditional mean
E |Y,1X, A,
o [ff, is accurate, we empirically find a significant reduction in the variance

of the estimator.

 If no predictive model is available, letting f, = ¢ for any constant reduces
the estimate to 0.

e Similar constructions are commonly used when targeting ATE (Hadad

but M-estimators is a more recent application of the idea (Zrnic and
Candes, 2024).




We prove a CLT assuming that the time-
varying variance can be approximated well

Key Assumptions:
1. Vigr = Eg, [SZ,Q*SZ’TQ* | %,_1] is almost surely invertible for each r € [T].
2. There exists a sequence of estimators {\A/t}tT:1 adapted to the filtration o(#,_,)
such that | | V2 = V2| |, = 0.
pA; = al X))

3. There exists a constant C such that <(C

P (At =al| %I—DXZ)

Theorem $S|mpllf|ed)

Assume — Z V_l/2 =0 (I/ﬁ) and the eigenvalues of both V, g« and

t—l
Vt are bounded above and below. Then under appropriate regularity

conditions (e.g. bracketing entropy, well-separated solutions):

T
— Yy <éT _ 9*) 4 N(O,1)

\/Tz_




How do we estimate V!/2?

WVe can use the law of total variance to decompose V, 4. into pieces that are
either invariant to history or known by the experimenter.

Var(sy g+« | Hi—1) = Var (EAtrwre (o« (X, A¢, i) | Xl )+

K

E Z 7Te(CL | Xt)2IE[’I’;’L9* (Xt,a,th(a))me* (Xt,a,y't(a))T | Xt] ’ Ht—1:| _

e (a] X3)

a=1

E |:]EAtN7Te (g« (X¢, Aty Vi) | Xi) Eaymor, (o (Xt, At, Ye) | Xt]T] :

Assumption: We have access to an external dataset {Xi}?zl, independent of
My
H . such that X; ~ p(x).

(alternatively can use sequential sample splitting)

Strategy (simplified):
e Learn model f; : R? X of — R?s.t. f(a, X)) — E [rip(X, A, ¥) | X, A, = a] > 0

e Learn model g, : R X of - R™4 st
. . p
efa, X)) — E |mj(a, X, Y(a)m}(a, X, Y(@)"|X,| = 0
e Plug external data into these models to estimate Var (St,@* | %t_l)




Results



We test the methodology with semi-
synthetic datasets

* The Osteoarthritis Initiative (OAl) is a ten year longitudinal study
tracking long-term outcomes of patients with osteoarthritis.

e Y is the four year change in KL grade (measure of knee health)

e X, includes baseline measurements of knee health, demographic
variables, baseline health risk factors

e A, is not available (observational study), so we create semi-synthetic
dataset

Create semi-synthetic dataset
e We use random forests to train a model /(X)) estimating £ [Yt|Xt]

e For user-chosen parameters {/{'} ,c, and {35} ,c» We generate semi-synthetic
outcomes where

K K
ELY, | X, Al = D Bilace+ D BLFX) X 1, _,
a=1 a=1




Estimators and sampling strategies

We test the methodology using uniform (i.e. non-adaptive), epsilon-greedy,
UCB, and Thompsons sampling.

* We also experiment with clipping the probabilities in the interval

[0.05,0.95]
Estimators tested:
* Naive estimator with w, = 1
* |PWV estimator
e Square-root |IPW estimator

e MAIPWV estimators.VVe experiment with estimating \A/t using:
o External dataset independent of #7,_;
e Sequential sample splitting

e Reusing #,_, to estimate the variance (no theoretical
guarantees)



Misspecified Case

Naive IPW = - SQ-IPW = MAIPWM-EXxternal MAIPWM-Reuse MAIPWM-Split
Uniform Epsilon-Greedy uCB Thompson Thompson-Clip
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orrectly Specified Case

Naive IPW = - SQ-IPW = MAIPWM-External MAIPWM-Reuse MAIPWM-Spilit
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Thank you!



