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Consider the contextual bandit 
problem
• Suppose features ( ), actions ( ), and outcomes ( ) are 

observed sequentially 

• At each time step , the analyst chooses 
for each a in a finite action space  given a pooled history 

.

• Denoting  as the potential outcome had action  been 
chosen at time step , we assume that 

Xt At Yt

t ℙ (At = a |Xt, ℋt−1)
𝒜

ℋt−1 = {(Xi, Ai, Yi}t−1
i=1

Yt(a) a
t

{(Xt, Yt(1), …, Yt(K))}T
t=1

iid∼ 𝒫

(Xt, At, Yt) ∼ p (y |x, a) ℙ (At = a |Xt, ℋt−1) p(x)
• We summarize the joint distribution at time step  zt



Even in the well-specified linear case, 
adaptive data collection can make 
inference difficult

•  for some feature map 

•  is a random variable such that , 

Zt = ϕ(Xt, At) ϕ : ℝp × 𝒜 → ℝ
ϵt 𝔼[ϵt |ℋt−1] = 0
𝔼[ϵ2

t |ℋt−1] = σ2

Suppose that
Yt = θTZt + ϵt

where

Fact (Lai and Wei, 1982)
A sufficient condition for the OLS estimate  to be asymptotically normal is for 
there to exist a sequence of positive definite matrices  such that 

̂θ
{BT}∞

T=1

B−1
T

T

∑
t=1

ZtZT
t

p
→ Id

This often will not be satisfied in bandit settings



This condition is often not obtained in bandit 
problems where the difference in expected 
rewards across arms is zero 

Example
Let  with 

In this setup, Zhang et al. (2020) demonstrate that the OLS estimator will be 
non-Gaussian when data is collected using standard bandit algorithms such 
as epsilon-greedy,  Thompson sampling, and UCB. 

At ∈ {0,1} 𝔼[Yt |At = 1] = 𝔼[Yt |At = 0]

This is a well studied problem in the literature. Some 
solutions include: 
• Estimating  across batches with the batch size tending to 

(Zhang et al., 2020). 
• Adding bias correction term when estimating  (Deshpande et 

al., 2018; Khamaru et al., 2023) 

̂θ ∞

̂θ

But all approaches still assume the linear model is true 



What can be said for generic M 
(and Z)- estimators

This is a less studied problem in the literature.

• Zhang et al. (2021) attempt to cover a target parameter that exists 
only when the conditional mean under the working model is 
correctly specified. That is, 

• In a parallel work to our own, Guo and Xu (2025) cover separate  
 that solve for the roots{θ⋆

a }a∈𝒜

θ⋆ = argmaxθ∈Θ𝔼 [mθ(Xt, At, Yt) |At, Xt]  for all At ∈ 𝒜, Xt ∈ ℝ .

0 = 𝔼 [mθ⋆
a
(Xt, Yt(a))]  for all t ∈ [T ]

Their work does allow for model misspecification, but:

• Assumes that the policy  converges to a 
deterministic function independent of history.  

• Does not allow for a model with a lower-dimensional  that is 
defined across actions. 

 

ℙ(At = a |Xt, ℋt−1)

θ⋆



What target makes sense under 
misspecification?

Our Choice: θ⋆ := argmaxθ∈Θ𝔼𝒫,A∼πe [mθ(X, A, Y )]

The evaluation policy ( |x) is a choice of density that is 
independent of history.

πe a

If the policy converges, letting 
 is perfectly sensible. πe(At = a |Xt) := lim

t→∞
ℙ(At = a |Xt, ℋt−1)

If the policy does not converge (e.g. multi-armed bandits when expected 
rewards across arms is comparable), it an interpretative choice. Some 
examples: 
• Uniform over the action space;

• Weighting certain actions based on prior assumptions about efficacy’

• Using some known deployment policy.



Choice of evaluation policy is crucial for 
model interpretation when it is misspecified
Assume  but we erroneously assume a linear model 

• Policy 1:  is uniform over {0,0.1,0.2,0.3,0.4,0.5}

• Policy 2:  is uniform over {0.6,0.7,0.8,0.9,1.0}

Yt ∼ N(6A2
t ,1)

pe(a |x)
pe(a |x)

Correctly Specified
Misspecified (Policy 1)
Misspecified (Policy 2)

v

Policy 1

v

Policy
 2

Misspecification 
Let  
Policy 1:  and  
Policy 2:  and 

mθ = (Yt − θ0 − θ1At)2

θ⋆
0 = − 0.2 θ⋆

1 = 4
θ⋆

0 = − 5.3 θ⋆
1 = 15

Correct Specification 
Let 


 and  under both policies
mθ = (Yt − θ0 − θ1A2

t )2

θ⋆
0 = 0 θ⋆

1 = 6



Z

Let us first consider a naive estimator

Generic Strategy

1. Show  using martingale CLT 

2. Taylor expand around this quantity to form a confidence ellipsoid center at 
3. Prove  to allow for plug-ins

1

T

T

∑
t=1

wt
·mt,θ⋆(Xt, At, Yt)

d→ N(0,Id)

θ⋆

̂θ0
p

→ θ⋆

Let us consider .̂θ0 := argmaxθ

T

∑
t=1

wtmθ(Xt, At, Yt)

Assume that    corresponds to the 
solution to the estimating equation

̂θ0

0 =
T

∑
t=1

wt
·mθmθ(Xt, At, Yt)

Assume  corresponds to the 
root of 

θ⋆

0 = 𝔼A∼πe [ ·mθ(X, A, Y )]



Proving a martingale CLT is non-trivial 
in the misspecified, adaptive setting

Desiderata: 1

T

T

∑
t=1

wt
·mt,θ⋆(Xt, At, Yt)

d→ N(0,Id)

1. Martingale Difference Sequence 

2. Conditional Variance Converges  
 

3. Asymptotic Negligibility  
 

We need to check that for any fixed  and c ∈ ℝd ϵ > 0

1
T

T

∑
t=1

𝔼 [cTw2
t

·mθ⋆(X, A, Y ) ·mθ⋆(X, A, Y )Tc1|wt
·mθ⋆(X,A,Y)>ϵ| |ℋt−1] p

→ 0

For , t ∈ [T ] 𝔼 [wt
·mθ⋆(Xt, At, Yt) |ℋt−1] = 0

 

for some fixed  

1
T

T

∑
t=1

𝔼 [cTw2
t

·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)Tc |ℋt−1] p
→ σ2

c

σ2
c

Both 
conditions 
tend to fail 
under 
misspecificat
ion + 
adaptivity



Controlling the first moment requires 
inverse propensity weighting
Assume that wt ∈ σ(ℋt−1, Xt)

𝔼 [wt
·mθ⋆(Xt, At, Yt) |ℋt−1] = 𝔼 [𝔼 [wt

·mθ⋆(Xt, At, Yt) |Xt, At, ℋt−1] |ℋt−1]
= 𝔼 [wt𝔼 [ ·mθ⋆(Xt, At, Yt) |Xt, At] |ℋt−1]

(but   
under correct specification)

𝔼 [ ·mθ⋆(Xt, At, Yt) |Xt, At] = 0

So  for all  when model is 
correctly specified

𝔼 [wt
·mθ⋆(Xt, At, Yt) |ℋt−1] = 0 wt ∈ σ(ℋt−1, Xt)

If the model is misspecified, pick . Then,wt =
pe(At = a |Xt)

ℙ (At = a |ℋt−1, Xt)

𝔼 [𝔼 [ pe(At = a |Xt)
ℙ (At = a |ℋt−1, Xt)

·mθ⋆(Xt, At, Yt) |Xt, At, ℋt−1] |ℋt−1] = 𝔼At∼πe [ ·mθ⋆(Xt, At, Yt)]
= 0



Controlling the second moment 
requires square root IPW-weighting 
On the other hand,   may also be quite 
unstable in bandit settings under a non-converging policy.   

If  has not already been used to control the first moment, we can simply let 

 (Zhang et al., 2021).  

𝔼 [w2
t

·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)T |ℋt−1]

wt

wt = ( pe(At = a |Xt)
ℙ (At = a |ℋt−1, Xt) )

1/2

1
T

T

∑
t=1

𝔼 [w2
t

·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)T |ℋt−1] =
1
T

T

∑
t=1

𝔼 [ pe(At = a |Xt)
ℙ (At = a |ℋt−1, Xt)

·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)T |ℋt−1]
=

1
T

T

∑
t=1

𝔼At∼πe [ ·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)T]
= 𝔼At∼πe [ ·mθ⋆(X, A, Y ) ·mθ⋆(Xt, At, Yt)T]

… but this is only a tractable strategy under correct 
specification.



Controlling the first two moments simultaneously 
requires additional free parameters 

Consider nested filtrations 

σ(ℋt−1) ⊆ σ(ℋt−1, Xt) ⊆ σ(ℋt−1, Xt, At) ⊆ σ(ℋt−1)

Choose  
to stabilize the 

variance

Σt ∈ σ(ℋt−1)
Choose  to 
ensure the score function is 

a MDS (i.e. control first 
moment)

wt ∈ σ(Xt, ℋt−1)



This is a viable strategy if we can 
estimate the time-varying variance well
Let  

Let  be an estimate of  for 

wt =
pe(At = a |Xt)

ℙ (At = a |ℋt−1, Xt)
Σt 𝔼 [st,θ⋆sT

t,θ⋆ |ℋt−1] st,θ := wt
·mθ⋆(Xt, At, Yt)

𝔼[Σ−1/2
t st,θ⋆ |ℋt−1] = Σ−1/2

t 𝔼[st,θ⋆ |ℋt−1]

= Σ−1/2
t 𝔼 [𝔼 [wt

·mθ⋆(Xt, At, Yt) |Xt, At, ℋt−1] ℋt−1]
= Σ−1/2

t 𝔼At∼πe [ ·mθ⋆(Xt, At, Yt)]
= 0

Checking first condition… 

Checking second condition… 
1
T

T

∑
t=1

𝔼[Σ−1/2
t st,θ⋆sT

t,θ⋆Σ−1/2
t |ℋt−1] =

1
T

T

∑
t=1

Σ−1/2
t 𝔼[st,θ⋆sT

t,θ⋆ |ℋt−1]Σ−1/2
t

≈
1
T

T

∑
t=1

Σ−1/2
t ΣtΣ−1/2

t

≈ Id

(assuming sufficiently good 
estimate…)



Our final estimator also allows for the use 
of flexible ML to reduce variance further  

We define the MAIPWM (misspecified augmented inverse propensity 
weighted M-) estimator as

θ̃T = argmaxθ∈Θ

T

∑
t=1

K

∑
a=1

πe(At = a |Xt)(mθ(a, Xt, ft(a, Xt)) + 1At=a
mθ(At, Xt, Yt) − mθ(Xt, At, ft(Xt, At))

ℙ (At = a |Xt, ℋt−1) ) .

where  is trained only on  and targets conditional mean 
. 

ft : ℝ × 𝒜 ℋt−1
𝔼 [Yt |Xt, At]
• If  is accurate, we empirically find a significant reduction in the variance 

of the estimator. 

• If no predictive model is available, letting  for any constant reduces 
the estimate to .

• Similar constructions are commonly used when targeting ATE (Hadad  
but -estimators is a more recent application of the idea (Zrnic and 
Candes, 2024). 

ft

ft = c
̂θ0

M

Note: it is not required to train  for our results to hold, but we do find a 
significant reduction in variance empirically. 

ft



We prove a CLT assuming that the time-
varying variance can be approximated well
Key Assumptions: 

1.  is almost surely invertible for each .  

2. There exists a sequence of estimators  adapted to the filtration  
such that . 

3. There exists a constant  such that  

Vt,θ⋆ := 𝔼𝒫,πt [st,θ⋆sT
t,θ⋆ |ℋt−1] t ∈ [T ]

{ ̂Vt}T
t=1 σ(ℋt−1)

| | ̂V−1/2
t − V−1/2

t,θ⋆ | |op
p

→ 0

C
pe(At = a |Xt)

ℙ (At = a |ℋt−1, Xt)
< C

Theorem (simplified)

Assume  and the eigenvalues of both  and 

 are bounded above and below.  Then under appropriate regularity 
conditions (e.g. bracketing entropy, well-separated solutions): 

1
T

T

∑
t=1

̂V−1/2
t st, ̂θT

= op(1/ T ) Vt,θ⋆

̂Vt

1

T

T

∑
t=1

̂V−1/2
t

·st, ̂θT ( ̂θT − θ⋆) d→ N(0,Id)



How do we estimate ?̂V−1/2
t

We can use the law of total variance to decompose  into pieces that are 
either invariant to history or known by the experimenter.

Vt,θ⋆

Assumption: We have access to an external dataset , independent of 

 such that .
(alternatively can use sequential sample splitting) 

{X̃i}n
i=1

ℋt−1 X̃i
iid∼ p(x)

Strategy (simplified):
• Learn model  s.t. 
• Learn model  s.t. 

• Plug external data into these models to estimate 

ft : ℝp × 𝒜 → ℝd ft(a, Xt) − 𝔼 [ ·mθ⋆(Xt, At, Yt) |Xt, At = a] p
→ 0

gt : ℝ × 𝒜 → ℝd×d

et(a, Xt) − 𝔼 [ ·m⋆
θ (a, Xt, Yt(a)) ·m⋆

θ (a, Xt, Yt(a))T |Xt] p
→ 0

Var (st,θ⋆ |ℋt−1)



Results



We test the methodology with semi-
synthetic datasets 

• The Osteoarthritis Initiative (OAI) is a ten year longitudinal study 
tracking long-term outcomes of patients with osteoarthritis. 

•  is the four year change in KL grade (measure of knee health) 

•  includes baseline measurements of knee health, demographic 
variables, baseline health risk factors

•  is not available (observational study), so we create semi-synthetic 
dataset

Yt

Xt

At

Create semi-synthetic dataset 
• We use random forests to train a model  estimating 

• For user-chosen parameters  and , we generate semi-synthetic 
outcomes where

f(Xt) 𝔼 [Yt |Xt]
{βa

1}a∈𝒜 {βa
2}a∈𝒜

𝔼[Yt |Xt, At] =
K

∑
a=1

βa
11At=a +

K

∑
a=1

βa
2 f(Xt) × 1At=a



Estimators and sampling strategies
We test the methodology using uniform (i.e. non-adaptive), epsilon-greedy, 
UCB, and Thompsons sampling. 

• We also experiment with clipping the probabilities in the interval 

Estimators tested:

• Naive estimator with 

• IPW estimator

• Square-root IPW estimator

• MAIPW estimators. We experiment with estimating  using:

• External dataset independent of 

• Sequential sample splitting

• Reusing  to estimate the variance (no theoretical 
guarantees)

[0.05,0.95]

wt = 1

̂Vt

ℋt−1

ℋt−1



Misspecified Case

β1 = (0,0,1,2,2,3,4,4) β2 = (1, − 1,1,0, − 3,1,1,1)

Uniform Epsilon−Greedy UCB Thompson Thompson−Clip
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Correctly Specified Case

β1 = (0,1,2,3,4,5,6,7) β2 = (0,0,0,0,0,0,0,0)

Uniform Epsilon−Greedy UCB Thompson Thompson−Clip
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Thank you!


