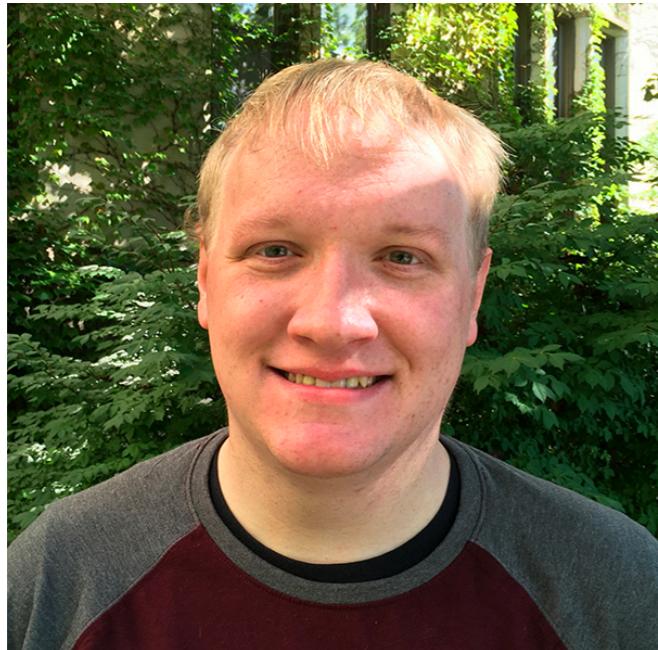


Adaptive Off-Policy Inference for M-Estimators Under Model Misspecification



James
Leiner

**Carnegie Mellon
University**

Based on joint work with

Robin
Dunn
**Novartis
Pharmaceutical
Corporation**

Aaditya
Ramdas
**Carnegie
Mellon**

December 17, 2025

Consider the contextual bandit problem

- Suppose features (X_t) , actions (A_t) , and outcomes (Y_t) are observed sequentially
- At each time step t , the analyst chooses $\mathbb{P}(A_t = a | X_t, \mathcal{H}_{t-1})$ for each a in a finite action space \mathcal{A} given a pooled history $\mathcal{H}_{t-1} = \{(X_i, A_i, Y_i)\}_{i=1}^{t-1}$.
- Denoting $Y_t(a)$ as the *potential outcome* had action a been chosen at time step t , we assume that

$$\{(X_t, Y_t(1), \dots, Y_t(K))\}_{t=1}^T \stackrel{\text{iid}}{\sim} \mathcal{P}$$

- We summarize the joint distribution at time step t as

$$(X_t, A_t, Y_t) \sim p(y | x, a) \mathbb{P}(A_t = a | X_t, \mathcal{H}_{t-1}) p(x)$$

Even in the well-specified linear case, adaptive data collection can make inference difficult

Suppose that

$$Y_t = \theta^T Z_t + \epsilon_t$$

where

- $Z_t = \phi(X_t, A_t)$ for some feature map $\phi : \mathbb{R}^p \times \mathcal{A} \rightarrow \mathbb{R}$
- ϵ_t is a random variable such that $\mathbb{E}[\epsilon_t | \mathcal{H}_{t-1}] = 0$, $\mathbb{E}[\epsilon_t^2 | \mathcal{H}_{t-1}] = \sigma^2$

Fact (Lai and Wei, 1982)

A sufficient condition for the OLS estimate $\hat{\theta}$ to be asymptotically normal is for there to exist a sequence of positive definite matrices $\{B_T\}_{T=1}^\infty$ such that

$$B_T^{-1} \sum_{t=1}^T Z_t Z_t^T \xrightarrow{p} I_d$$

This often **will not** be satisfied in bandit settings

This condition is often not obtained in bandit problems where the difference in expected rewards across arms is zero

Example

Let $A_t \in \{0,1\}$ with $\mathbb{E}[Y_t | A_t = 1] = \mathbb{E}[Y_t | A_t = 0]$

In this setup, Zhang et al. (2020) demonstrate that the OLS estimator will be **non-Gaussian** when data is collected using standard bandit algorithms such as epsilon-greedy, Thompson sampling, and UCB.

This is a well studied problem in the literature. Some solutions include:

- Estimating $\hat{\theta}$ across batches with the batch size tending to ∞ (Zhang et al., 2020).
- Adding bias correction term when estimating $\hat{\theta}$ (Deshpande et al., 2018; Khamaru et al., 2023)

But all approaches still assume the linear model is **true**

What can be said for generic M (and Z)- estimators

This is a less studied problem in the literature.

- Zhang et al. (2021) attempt to cover a target parameter that exists only when the conditional mean under the working model is **correctly specified**. That is,

$$\theta^* = \operatorname{argmax}_{\theta \in \Theta} \mathbb{E} [m_\theta(X_t, A_t, Y_t) | A_t, X_t] \text{ for all } A_t \in \mathcal{A}, X_t \in \mathbb{R}.$$

- In a parallel work to our own, Guo and Xu (2025) cover separate $\{\theta_a^*\}_{a \in \mathcal{A}}$ that solve for the roots

$$0 = \mathbb{E} [m_{\theta_a^*}(X_t, Y_t(a))] \text{ for all } t \in [T]$$

Their work does allow for **model misspecification**, but:

- Assumes that the policy $\mathbb{P}(A_t = a | X_t, \mathcal{H}_{t-1})$ converges to a deterministic function independent of history.
- Does not allow for a model with a lower-dimensional θ^* that is defined *across actions*.

What target makes sense under misspecification?

Our Choice: $\theta^* := \operatorname{argmax}_{\theta \in \Theta} \mathbb{E}_{\mathcal{P}, A \sim \pi_e} [m_\theta(X, A, Y)]$

The evaluation policy $\pi_e(a|x)$ is a choice of density that is independent of history.

If the policy converges, letting

$\pi_e(A_t = a | X_t) := \lim_{t \rightarrow \infty} \mathbb{P}(A_t = a | X_t, \mathcal{H}_{t-1})$ is perfectly sensible.

If the policy does not converge (e.g. multi-armed bandits when expected rewards across arms is comparable), it is an **interpretative choice**. Some examples:

- Uniform over the action space;
- Weighting certain actions based on prior assumptions about efficacy'
- Using some known deployment policy.

Choice of evaluation policy is crucial for model interpretation when it is misspecified

Assume $Y_t \sim N(6A_t^2, 1)$ but we erroneously assume a linear model

- Policy 1: $p_e(a|x)$ is uniform over $\{0, 0.1, 0.2, 0.3, 0.4, 0.5\}$
- Policy 2: $p_e(a|x)$ is uniform over $\{0.6, 0.7, 0.8, 0.9, 1.0\}$

Correct Specification

Let $m_\theta = (Y_t - \theta_0 - \theta_1 A_t^2)^2$

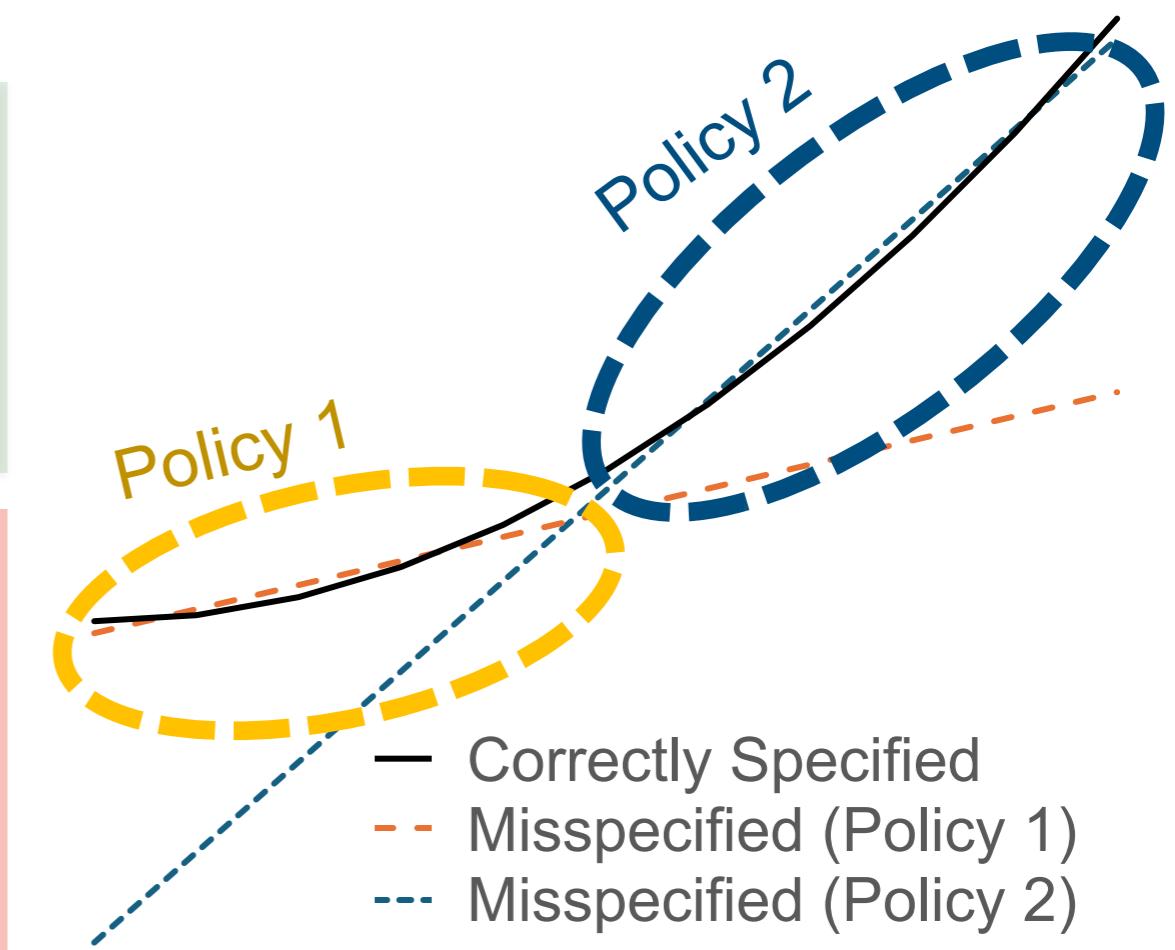
$\theta_0^* = 0$ and $\theta_1^* = 6$ under both policies

Misspecification

Let $m_\theta = (Y_t - \theta_0 - \theta_1 A_t)^2$

Policy 1: $\theta_0^* = -0.2$ and $\theta_1^* = 4$

Policy 2: $\theta_0^* = -5.3$ and $\theta_1^* = 15$

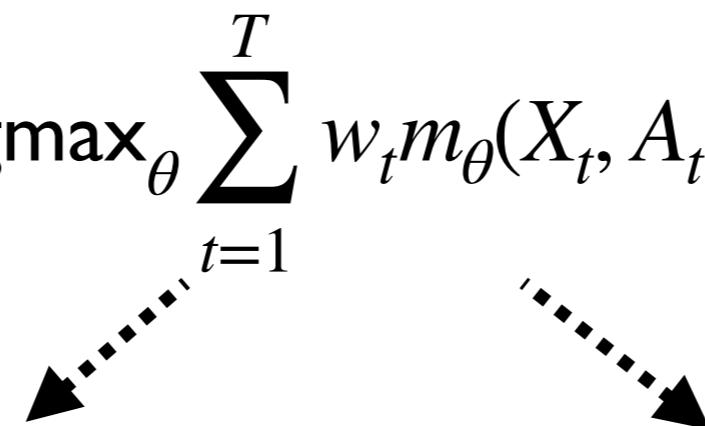


Let us first consider a naive estimator

Let us consider $\hat{\theta}_0 := \operatorname{argmax}_{\theta} \sum_{t=1}^T w_t m_{\theta}(X_t, A_t, Y_t)$.

Assume that $\hat{\theta}_0$ corresponds to the solution to the estimating equation

$$0 = \sum_{t=1}^T w_t \dot{m}_{\theta} m_{\theta}(X_t, A_t, Y_t)$$



Assume θ^* corresponds to the root of $0 = \mathbb{E}_{A \sim \pi_e} [\dot{m}_{\theta}(X, A, Y)]$

Generic Strategy

1. Show $\frac{1}{\sqrt{T}} \sum_{t=1}^T w_t \dot{m}_{t, \theta^*}(X_t, A_t, Y_t) \xrightarrow{d} N(0, I_d)$ using martingale CLT
2. Taylor expand around this quantity to form a confidence ellipsoid center at θ^*
3. Prove $\hat{\theta}_0 \xrightarrow{P} \theta^*$ to allow for plug-ins

Proving a martingale CLT is non-trivial in the misspecified, adaptive setting

Desiderata: $\frac{1}{\sqrt{T}} \sum_{t=1}^T w_t \dot{m}_{\theta^*}(X_t, A_t, Y_t) \xrightarrow{d} N(0, I_d)$

We need to check that for any fixed $c \in \mathbb{R}^d$ and $\epsilon > 0$

I. Martingale Difference Sequence

For $t \in [T]$, $\mathbb{E} [w_t \dot{m}_{\theta^*}(X_t, A_t, Y_t) | \mathcal{H}_{t-1}] = 0$

2. Conditional Variance Converges

$\frac{1}{T} \sum_{t=1}^T \mathbb{E} [c^T w_t^2 \dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T c | \mathcal{H}_{t-1}] \xrightarrow{p} \sigma_c^2$

for some fixed σ_c^2

3. Asymptotic Negligibility

$\frac{1}{T} \sum_{t=1}^T \mathbb{E} [c^T w_t^2 \dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X, A, Y)^T c 1_{|w_t \dot{m}_{\theta^*}(X, A, Y)| > \epsilon} | \mathcal{H}_{t-1}] \xrightarrow{p} 0$

Both conditions tend to fail under misspecification + adaptivity

Controlling the first moment requires inverse propensity weighting

Assume that $w_t \in \sigma(\mathcal{H}_{t-1}, X_t)$

$$\begin{aligned}\mathbb{E} [w_t \dot{m}_{\theta^*}(X_t, A_t, Y_t) | \mathcal{H}_{t-1}] &= \mathbb{E} \left[\mathbb{E} [w_t \dot{m}_{\theta^*}(X_t, A_t, Y_t) | X_t, A_t, \mathcal{H}_{t-1}] | \mathcal{H}_{t-1} \right] \\ &= \mathbb{E} \left[w_t \mathbb{E} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) | X_t, A_t] | \mathcal{H}_{t-1} \right] \\ &\quad (\text{but } \mathbb{E} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) | X_t, A_t] = 0 \\ &\quad \text{under correct specification})\end{aligned}$$

So $\mathbb{E} [w_t \dot{m}_{\theta^*}(X_t, A_t, Y_t) | \mathcal{H}_{t-1}] = 0$ for all $w_t \in \sigma(\mathcal{H}_{t-1}, X_t)$ when model is **correctly specified**

If the **model is misspecified**, pick $w_t = \frac{p_e(A_t = a | X_t)}{\mathbb{P}(A_t = a | \mathcal{H}_{t-1}, X_t)}$. Then,

$$\begin{aligned}\mathbb{E} \left[\mathbb{E} \left[\frac{p_e(A_t = a | X_t)}{\mathbb{P}(A_t = a | \mathcal{H}_{t-1}, X_t)} \dot{m}_{\theta^*}(X_t, A_t, Y_t) | X_t, A_t, \mathcal{H}_{t-1} \right] | \mathcal{H}_{t-1} \right] &= \mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X_t, A_t, Y_t)] \\ &= 0\end{aligned}$$

Controlling the second moment requires square root IPW-weighting

On the other hand, $\mathbb{E} [w_t^2 \dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T | \mathcal{H}_{t-1}]$ may also be quite unstable in bandit settings under a **non-converging** policy.

If w_t has **not already been used** to control the first moment, we can simply let

$$w_t = \left(\frac{p_e(A_t = a | X_t)}{\mathbb{P}(A_t = a | \mathcal{H}_{t-1}, X_t)} \right)^{1/2} \text{ (Zhang et al., 2021).}$$

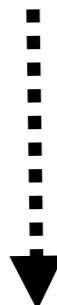
$$\begin{aligned} \frac{1}{T} \sum_{t=1}^T \mathbb{E} [w_t^2 \dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T | \mathcal{H}_{t-1}] &= \frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\frac{p_e(A_t = a | X_t)}{\mathbb{P}(A_t = a | \mathcal{H}_{t-1}, X_t)} \dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T | \mathcal{H}_{t-1} \right] \\ &= \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T] \\ &= \mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X, A, Y) \dot{m}_{\theta^*}(X_t, A_t, Y_t)^T] \end{aligned}$$

... but this is only a tractable strategy under correct specification.

Controlling the first two moments simultaneously requires additional free parameters

Consider nested filtrations

$$\sigma(\mathcal{H}_{t-1}) \subseteq \sigma(\mathcal{H}_{t-1}, X_t) \subseteq \sigma(\mathcal{H}_{t-1}, X_t, A_t) \subseteq \sigma(\mathcal{H}_{t-1})$$



Choose $\Sigma_t \in \sigma(\mathcal{H}_{t-1})$
to **stabilize the variance**

Choose $w_t \in \sigma(X_t, \mathcal{H}_{t-1})$ to
ensure the score function is a MDS (i.e. control first moment)

This is a viable strategy if we can estimate the time-varying variance well

$$\text{Let } w_t = \frac{p_e(A_t = a | X_t)}{\mathbb{P}(A_t = a | \mathcal{H}_{t-1}, X_t)}$$

Let Σ_t be an estimate of $\mathbb{E} \left[s_{t,\theta^\star} s_{t,\theta^\star}^T | \mathcal{H}_{t-1} \right]$ for $s_{t,\theta} := w_t \dot{m}_{\theta^\star}(X_t, A_t, Y_t)$

Checking first condition...

$$\begin{aligned} \mathbb{E}[\Sigma_t^{-1/2} s_{t,\theta^\star} | \mathcal{H}_{t-1}] &= \Sigma_t^{-1/2} \mathbb{E}[s_{t,\theta^\star} | \mathcal{H}_{t-1}] \\ &= \Sigma_t^{-1/2} \mathbb{E} \left[\mathbb{E} \left[w_t \dot{m}_{\theta^\star}(X_t, A_t, Y_t) | X_t, A_t, \mathcal{H}_{t-1} \right] \mathcal{H}_{t-1} \right] \\ &= \Sigma_t^{-1/2} \mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^\star}(X_t, A_t, Y_t)] \\ &= 0 \end{aligned}$$

Checking second condition...

$$\begin{aligned} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\Sigma_t^{-1/2} s_{t,\theta^\star} s_{t,\theta^\star}^T \Sigma_t^{-1/2} | \mathcal{H}_{t-1}] &= \frac{1}{T} \sum_{t=1}^T \Sigma_t^{-1/2} \mathbb{E}[s_{t,\theta^\star} s_{t,\theta^\star}^T | \mathcal{H}_{t-1}] \Sigma_t^{-1/2} \\ &\approx \frac{1}{T} \sum_{t=1}^T \Sigma_t^{-1/2} \Sigma_t \Sigma_t^{-1/2} && \text{(assuming sufficiently good estimate...)} \\ &\approx I_d \end{aligned}$$

Our final estimator also allows for the use of flexible ML to reduce variance further

We define the MAIPWM (misspecified augmented inverse propensity weighted M-) estimator as

$$\tilde{\theta}_T = \operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^T \sum_{a=1}^K \pi_e(A_t = a | X_t) \left(m_\theta(a, X_t, f_t(a, X_t)) + 1_{A_t=a} \frac{m_\theta(A_t, X_t, Y_t) - m_\theta(X_t, A_t, f_t(X_t, A_t))}{\mathbb{P}(A_t = a | X_t, \mathcal{H}_{t-1})} \right).$$

where $f_t : \mathbb{R} \times \mathcal{A}$ is trained only on \mathcal{H}_{t-1} and targets conditional mean $\mathbb{E}[Y_t | X_t, A_t]$.

- If f_t is accurate, we empirically find a significant reduction in the variance of the estimator.
- If no predictive model is available, letting $f_t = c$ for any constant reduces the estimate to $\hat{\theta}_0$.
- Similar constructions are commonly used when targeting ATE (Hadad but *M*-estimators is a more recent application of the idea (Zrnic and Candes, 2024).

Note: it is **not required** to train f_t for our results to hold, but we do find a significant reduction in variance empirically.

We prove a CLT assuming that the time-varying variance can be approximated well

Key Assumptions:

1. $V_{t,\theta^\star} := \mathbb{E}_{\mathcal{P},\pi_t} \left[s_{t,\theta^\star} s_{t,\theta^\star}^T \mid \mathcal{H}_{t-1} \right]$ is almost surely invertible for each $t \in [T]$.
2. There exists a sequence of estimators $\{\hat{V}_t\}_{t=1}^T$ adapted to the filtration $\sigma(\mathcal{H}_{t-1})$ such that $\|\hat{V}_t^{-1/2} - V_{t,\theta^\star}^{-1/2}\|_{\text{op}} \xrightarrow{p} 0$.
3. There exists a constant C such that $\frac{p_e(A_t = a \mid X_t)}{\mathbb{P}(A_t = a \mid \mathcal{H}_{t-1}, X_t)} < C$

Theorem (simplified)

Assume $\frac{1}{T} \sum_{t=1}^T \hat{V}_t^{-1/2} s_{t,\hat{\theta}_T} = o_p(1/\sqrt{T})$ and the eigenvalues of both V_{t,θ^\star} and \hat{V}_t are bounded above and below. Then under appropriate regularity conditions (e.g. bracketing entropy, well-separated solutions):

$$\frac{1}{\sqrt{T}} \sum_{t=1}^T \hat{V}_t^{-1/2} \dot{s}_{t,\hat{\theta}_T} (\hat{\theta}_T - \theta^\star) \xrightarrow{d} N(0, I_d)$$

How do we estimate $\hat{V}_t^{-1/2}$?

We can use the law of total variance to decompose V_{t,θ^*} into pieces that are either **invariant to history** or **known by the experimenter**.

$$\begin{aligned} \text{Var}(s_{t,\theta^*} \mid \mathcal{H}_{t-1}) &= \text{Var}\left(\mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) \mid X_t]\right) + \\ &\quad \mathbb{E}\left[\sum_{a=1}^K \frac{\pi_e(a \mid X_t)^2}{\pi_t(a \mid X_t)} \mathbb{E}[\dot{m}_{\theta^*}(X_t, a, Y_t(a)) \dot{m}_{\theta^*}(X_t, a, Y_t(a))^T \mid X_t] \mid \mathcal{H}_{t-1}\right] - \\ &\quad \mathbb{E}\left[\mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) \mid X_t] \mathbb{E}_{A_t \sim \pi_e} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) \mid X_t]^T\right]. \end{aligned}$$

Assumption: We have access to an external dataset $\{\tilde{X}_i\}_{i=1}^n$, independent of \mathcal{H}_{t-1} such that $\tilde{X}_i \stackrel{\text{iid}}{\sim} p(x)$.
(alternatively can use sequential sample splitting)

Strategy (simplified):

- Learn model $f_t : \mathbb{R}^p \times \mathcal{A} \rightarrow \mathbb{R}^d$ s.t. $f_t(a, X_t) - \mathbb{E} [\dot{m}_{\theta^*}(X_t, A_t, Y_t) \mid X_t, A_t = a] \xrightarrow{p} 0$
- Learn model $g_t : \mathbb{R} \times \mathcal{A} \rightarrow \mathbb{R}^{d \times d}$ s.t.
 $e_t(a, X_t) - \mathbb{E} [\dot{m}_{\theta^*}^\star(a, X_t, Y_t(a)) \dot{m}_{\theta^*}^\star(a, X_t, Y_t(a))^T \mid X_t] \xrightarrow{p} 0$
- Plug external data into these models to estimate $\text{Var}(s_{t,\theta^*} \mid \mathcal{H}_{t-1})$

Results

We test the methodology with semi-synthetic datasets

- The Osteoarthritis Initiative (OAI) is a ten year longitudinal study tracking long-term outcomes of patients with osteoarthritis.
 - Y_t is the four year change in KL grade (measure of knee health)
 - X_t includes baseline measurements of knee health, demographic variables, baseline health risk factors
 - A_t is not available (observational study), so we create semi-synthetic dataset

Create semi-synthetic dataset

- We use random forests to train a model $f(X_t)$ estimating $\mathbb{E} [Y_t | X_t]$
- For user-chosen parameters $\{\beta_1^a\}_{a \in \mathcal{A}}$ and $\{\beta_2^a\}_{a \in \mathcal{A}}$, we generate semi-synthetic outcomes where

$$\mathbb{E}[Y_t | X_t, A_t] = \sum_{a=1}^K \beta_1^a 1_{A_t=a} + \sum_{a=1}^K \beta_2^a f(X_t) \times 1_{A_t=a}$$

Estimators and sampling strategies

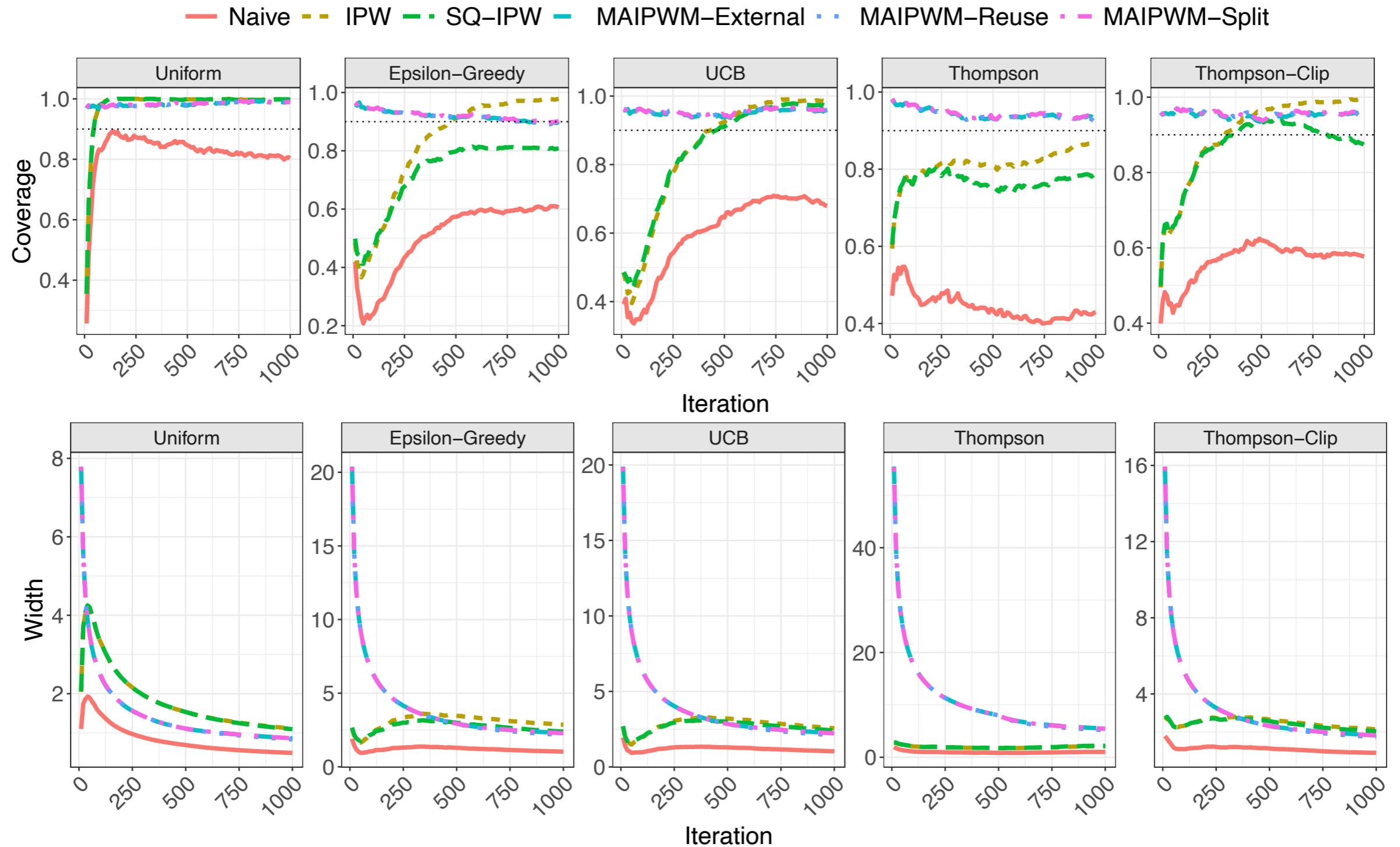
We test the methodology using uniform (i.e. non-adaptive), epsilon-greedy, UCB, and Thompsons sampling.

- We also experiment with clipping the probabilities in the interval [0.05,0.95]

Estimators tested:

- Naive estimator with $w_t = 1$
- IPW estimator
- Square-root IPW estimator
- MAIPW estimators. We experiment with estimating \hat{V}_t using:
 - External dataset independent of \mathcal{H}_{t-1}
 - Sequential sample splitting
 - Reusing \mathcal{H}_{t-1} to estimate the variance (*no theoretical guarantees*)

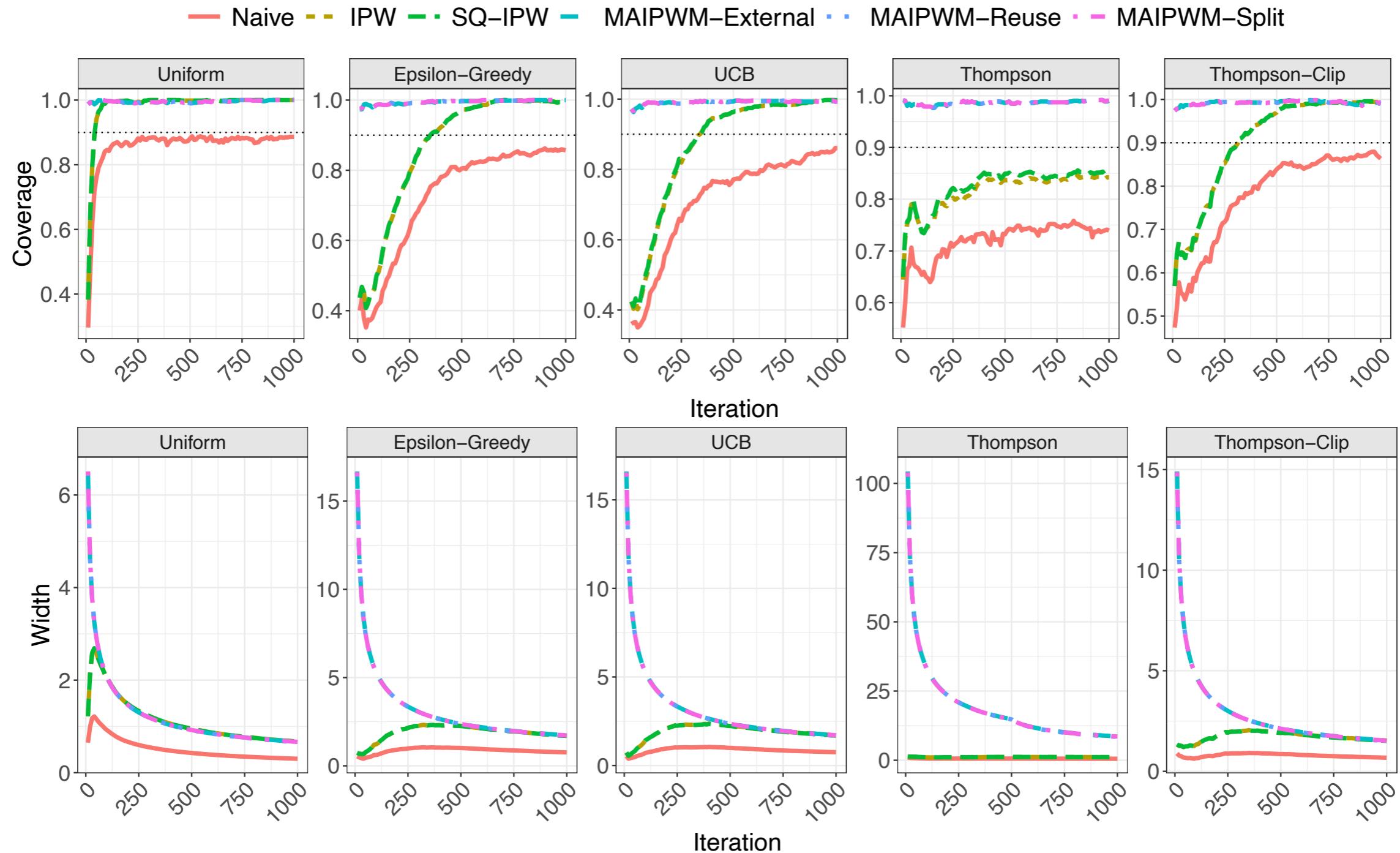
Misspecified Case



$$\beta_1 = (0, 0, 1, 2, 2, 3, 4, 4)$$

$$\beta_2 = (1, -1, 1, 0, -3, 1, 1, 1)$$

Correctly Specified Case



$$\beta_1 = (0, 1, 2, 3, 4, 5, 6, 7) \quad \beta_2 = (0, 0, 0, 0, 0, 0, 0, 0)$$

Thank you!