Data fission: splitting a single data point
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Misspecified GLMs

We assume that y; follows some distribution in the exponential

Linear Regression

We assume that y; is the dependent variable and x; € RP is a

Introduction |

Suppose we observe data with a known distribution, up to an |

unknown variable of interest 6: X ~ Py(6). vector of features with corresponding design matrix X € R™?. dispersion family and attempt to model y, := E[y;| x;] through

Y=u+ewithe=(c,..., en)T ~ N(O,azln)
where 62 is known and u = E[Y|X] € R" is unknown

Draw Z ~ N(O,Gz/\

Usef(Y):=Y+1tZto

We explore decompositions of X into f(X) and g(X) such that: covariates x; € RP under the assumption that m(u,) = ,BTxl- for

1. f(X)is not sufficient to reconstruct X by itself some known link function m.

2. There exists a function & such that A(f(X), g(X)) =X Problem! Even if the distribution of y; is known, it is unlikely

3. One of the following two properties holds: that y; is actually a linear combination of the selected
covariates for realistic selection rules.

Assumption: The analyst fissions the data such that
gy L g | X, f(Y) foralli # k.

> f(X) L g(X) with known marginal distributions (“strong version”) Use g(¥) to conduct

inference on

. )

p(M) = argmin; H g(Y)—X,p ”
= Xy X3) "' X8 (Y)

select a model
M C [p] and

» f(X) and g(X) | f(X) have known and tractable distributions (“weak
version”)

Additive randomization

Consider observing X ~ N(0, 6%). We can then draw Z ~ N(0,6°) and

randomize by: X~ N(H, 0_2)

1
fX):=X+1Z Jo) a=A=—4
~ N, (1 + 1252 J_ ~ N, (1 + 7202

As 7 increases, more information gets allocated to f(X) and less

corresponding design

matrix X,

Target Parameter: Use f(Y) to select a model M C [p] which induces a quasi-

B.(M) = argmin;E [ | v-x.4 | 2] = (X X,)"'XT

Forming confidence intervals

BM) ~ N (B,(M), (1 + 776X X))

likelihood function on g(Y), for some working model p:

_ Z log p(g(¥) | B, f(Y), Xy,

i=1
Denote ﬂ (M) to be the empirical maximizer of L,

Target parameter now is the KL minimizer between the
working model and true distribution g:

information gets allocated to g(X). Form 1 — a confidence

ok -2y 2(vT y. \-1
FHOM) 2,00/ (1 + 727K X B (M) = argmin DKL<Hq(g<yl)|X FIT [PeOD 1B £, XM)>

intervals as: "
l

Conditional randomization

AP :
If there exists 6 — o, calculate this before
fissioning the data and use throughout—-all
guarantees above still hold asymptotically.

Why not data splitting?

Under mild regularity conditions (Fahrmeir 1990),
,BA,L(M) L pX(M) and asymptotically conservative Cls can
be constructed (see arxiv preprint for details).

Fission for Poisson regression

Alternatively, we can use conditional rather than additive Unknown 67?

randomization and then choosinga a7 € (0,1):

X ~ Pois(0)

J(X) ~ Bin(X, 7) gX) =X - f(X) | ,
. : Consider a dataset with low n and a Split 1 A : : : : :
~ Pois(z6) ~ Pois ((1 — 1)9) . - A Spiit 2 - We use the same simulation setup as linear regression, but now with a
handful of high leverage points. N -7 Poisson-distributed response. [os=F=
1 1+ H // " . . e T N -
When 7 = —, f(X) and g(X) are roughly comparable. As 7 — 0, g(X) 4 X As Data splitting cannot allocate this P Splitting and fission both - i
2d information to both datasets, so AN control FCR but fission allows «**
- 1,fX) - X. . . . . . « : : o 2
information tradeoff is not “smooth”. X for tighter confidence B
i i 66 % o intervals. e i i deake ==t I :
Conjugate Prior “Reversal Data fission allows - | T e e
? > th I f t i f|SS|0n - fU" - Spllt ’ 3L9Verage;arameter5 ° Leverage Paramet
- _* | the information in
- s . . 1.0 1.04
Bayesian Inference: pO|X) o pX|0) p®) s -7 £ Phe that single point ..and also enables
Posterior  Data Prior R -7 L7 to be “split” improved power/ g, -
_ - o ¢°° evenly across f(X) recision at inference s g
Is X ~ Px(0) conjugate to some .. ’ 2L Y / Eta o when usin 0 W PP e
S Then draw Z ~ P,(X) X X and g(X). 9 9 o g Y A S
other distribution P,? LASSO for variable e . - -

We simulate a small dataset (n = 20, p = 16) with a single high

4
Leverage Parameter Leverage Parameter

leverage point and repeat the data fission procedure for 500 trials,
selecting a model with LASSO. We compare data fission along with

pX|Z) o« p(Z|X) pX)

“Reverse” the prior to

accomplish data fission Dataset2  Dataset 1 Original Data data splitting, and reusing the full dataset for both selection and seIeCtlve Inf_erel!ce for

inference (“double dipping”). Tre“d Fl Iterlng
f(X) = g(X) .= Spllttmg and fission N ge"o A We Observe a time series Trend filtering example
N T 5. = £,(t) + €, where €, ~ N(0,6%) and

Known marginals for Distribution of fission allows for . Jo&) + ¢ ! 0.0 .

exponential family 2(X) | f(X) known from tighter confidence E ol § Jois not assumed to .belc.)ng to any

distributions Bavesian inference intervals. Double o e e 5 model class. Trend filtering estimate
dipping violates FCR | = .o A DT o fo by constructing a piecewise linear

Need more information for selection? Draw Z,,. ..., Zg and let control. [ —— SR ——— function as:
f(X) := (217 e o o 9 ZB)' ﬁSSion - fU” - Spllt 1.0 1.0 0 i ) Time i ) h

? : 1 2 where 1 is a tunin
Data fission also 08 o8 fo=argmin o= [[Y=x |, +2 || (1 — %) — (O, = X,_p) || 9
2 I parameter

o
)

enables improved
power/precision at
the selection stage
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Randomization with conjugacy

The exponential distribution is conjugate prior to the Poisson

..........
R R R LY T S

Equivalently, we can conceptualize trend filtering in two stages:
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distribution. X ~ EXp(Q)

when using LASSO
for variable selection. N N S %

Leverage Parameter Leverage Parameter
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Stage 1: Knot Selection

The kink points at which fo
switches direction are called

Stage 2: Minimization

Denote A to be a matrix with
entries corresponding to the

() ~ Pois(zX) & M

) £(OLAX) ~ Gamma (1+(X),0+7

g(X) = knots

Interactive Hypothesis Testing
[ Full Dataset (X) ]

o D)
+ Use for Cl construction on

( ) rejection set
p-values (py,...,p,)

V" >

Cg(p,-) = min(p;1 —piD C h(p) =21 <pl->%> )

Form rejection set adaptively using BH, AdaPT (Lei and Fithian
'18), or STAR (Lei et al. '20) procedures.

Simulation results

N(p;,1) with u; = 0 for nulls and p; = 2 for nulls

selected falling factorial basis

A specific set of knots ¢, ..., t,
implicitly defines a falling
factorial basis which is a set of
functions whose discrete
derivatives are constant for
adjacent design points up to
orderk —1

We then have that:

f(X) ~ Geo <L
0+7 A
fo=AATA)ATY

When 7 ~ 0, the most information is contained in f(X). As7 — 0 or
7= 00, g(X) | f(X) 5 X.

Selective Inference

We primarily focus on the use of data fission for (potentially high
dimensional) model selection and inference.

Full Dataset (X)

g(X)

Use f(Y) to select basis A Use g(Y) to conduct inference

Forming confidence intervals

p*A) = AATA)'AT Y
where # = (fo(D),...., /o)’

Target parameter is the
projected mean:

Reveal full data at

Randomize dataset inference step

Use P (g(X) | f(X)) for
inference

Uniform Cls:
P(3i € [n] : p*(A), & Cl(p™)) < a
Using Koenker (2011) for

construction methodology (see
arxiv preprint for details).

Pointwise Cls:

U d t lect
se any proce ure to selecC IP’(,u*(A)l- ¢ C|(//t*),-) < aforalli

a model from f(X)

Can be constructed exactly the
same as in the linear regression
example

We assume x; ~

\/

(arranged in a circle). After forming rejection set (£) from fissioned
data (using same Gaussian decomposition as above), we:

Information splittin Form 1 — a Cl: AdaPT (full): AdaPT (fission):
P g Y 8O 1+ 72 P - B - The above construction will control the FCR (for pointwise Cls) or
#z ?°\ [=z| °° - simultaneous type | error rate (for uniform Cls). To test this procedure,
Assuming that Py(0) is known up to unknown parameter of interest 6, we run it on a real data example. For an astronomical object of interest,
data fissions smoothly trades off Fisher information between to cover we model the coated flux f(4) as a function of wavelengths 4 (Politsch et
. . . __ 1 al. (2020b).
selection and inference by varying 7. H= | R Hi Example rejection regions, with and without ( ) oo s
IER

data fission forz = 0.1
Data fission appears

to model the
underlying trend well,
while still allowing for
enough information to
construct tight
confidence intervals

Varying 7 shifts information between selection and inference steps,

For “strong version” Whlle controlling FDR

15() = L) (@) + Ly (0)

For "weak version”

1(0) = ixy(©) + E [y ()]

ergs/s/cm?/A)
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Pow:
o
Cl Length

A
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False discover:
o
[

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
|
:
|
|
l
|
|
l
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
: both control FCR but 08
|
|
|
|
I
|
|
l
|
|
l
|
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
|
:
|
|
:
|
|
:
|
|
|
|
|
|
|
|

= Actual =- Fitted

Uniform CI

= Pointwise CI




