Data fission: splitting a single data point

James Leiner¹, Boyan Duan², Larry Wasserman¹, Aaditya Ramdas¹

¹Department of Statistics and Data Science, Carnegie Mellon University

²Google

Introduction

Suppose we observe data with a known distribution, up to an unknown variable of interest θ : $X \sim P_X(\theta)$.

We explore decompositions of *X* into f(X) and g(X) such that:

- 1. f(X) is not sufficient to reconstruct X by itself
- 2. There exists a function h such that h(f(X), g(X)) = X
- 3. One of the following two properties holds:

 $\sim N(\theta, (1+\tau^2)\sigma^2)$

- $f(X) \perp g(X)$ with known marginal distributions ("strong version")
- f(X) and g(X) | f(X) have known and tractable distributions ("weak version")

Additive randomization

Consider observing
$$X \sim N(\theta, \sigma^2)$$
. We can then draw $Z \sim N(0, \sigma^2)$ and randomize by:

$$X \sim N(\theta, \sigma^2)$$

$$f(X) := X + \tau Z$$

$$g(X) := X - \frac{1}{\tau}Z$$

 $\sim N(\theta, (1+\tau^{-2})\sigma^2)$

As
$$\tau$$
 increases, more information gets allocated to $f(X)$ and less information gets allocated to $g(X)$.

Linear Regression

We assume that y_i is the dependent variable and $x_i \in \mathbb{R}^p$ is a vector of features with corresponding design matrix $X \in \mathbb{R}^{n \times p}$.

$$Y = \mu + \epsilon \text{ with } \epsilon = (\epsilon_1, \dots, \epsilon_n)^T \sim N(0, \sigma^2 I_n)$$

where σ^2 is known and $\mu = E[Y|X] \in \mathbb{R}^n$ is unknow
the error $Z \sim N(0, \sigma^2)$
Use $f(Y) := Y + \tau Z$ to
select a model
 $M \subseteq [p]$ and
corresponding design
matrix X_M
Use $g(Y)$ to conduct
inference on
 $\widehat{\beta}(M) = \operatorname{argmin}_{\widetilde{\beta}} \| g(Y) - X_M \widehat{\beta} \|$
 $= (X_M^T X_M)^{-1} X_M^T g(Y)$

Target Parameter:
$$\beta_*(M) = \operatorname{argmin}_{\tilde{\beta}} E\left[\left\| Y - X_M \tilde{\beta} \right\|^2 \right] = (X_M^T X_M)^{-1} X_M^T$$

Forming confidence intervals

$$\hat{\beta}(M) \sim N\left(\beta_{\star}(M), (1+\tau^{-2})\sigma^2(X_M^T X_M)^{-1}\right)$$

Form $1 - \alpha$ confidence $\hat{\beta}^k(M) \pm z_{\alpha/2} \sqrt{(1 + \tau^{-2})\sigma^2 (X_M^T X_M)_{kk}^{-1}}$ intervals as:

Misspecified GLMs

We assume that y_i follows some distribution in the exponential dispersion family and attempt to model $\mu_i := E[y_i | x_i]$ through covariates $x_i \in \mathbb{R}^p$ under the assumption that $m(\mu_i) = \beta^T x_i$ for some known link function *m*.

Problem! Even if the distribution of y_i is known, it is unlikely that μ_i is actually a linear combination of the selected covariates for realistic selection rules.

Solution

Assumption: The analyst fissions the data such that $g(y_i) \perp g(y_k) \mid X, f(Y)$ for all $i \neq k$.

Use f(Y) to select a model $M \subseteq [p]$ which induces a quasilikelihood function on g(Y), for some working model *p*:

$$L_{n} := \sum_{i=1}^{n} \log p(g(y_{i}) | \beta, f(Y), X_{M}),$$

Denote $\hat{\beta}_n(M)$ to be the empirical maximizer of L_n

Target parameter now is the KL minimizer between the working model and true distribution q:

$$\beta_n^{\star}(M) = \operatorname{argmin}_{\beta} \mathcal{D}_{KL} \left(\prod_{i=1}^n q(g(y_i) | X, f(Y)) | | \prod_{i=1}^n p(g(y_i) | \beta, f(Y), X_M) \right)$$

Selective Inference for Trend Filtering

 $\hat{f}_0 = \operatorname{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \| Y - x \|_2^2 + \lambda \| (x_{t+1} - x_t) - (x_t - x_{t-1}) \|_1 \quad \text{where } \lambda \text{ is a tuning}$

Equivalently, we can conceptualize trend filtering in two stages:

Stage 1: Knot Selection

The kink points at which \hat{f}_0 switches direction are called knots

A specific set of knots t_1, \ldots, t_r implicitly defines a falling

Stage 2: Minimization

Denote A to be a matrix with entries corresponding to the selected falling factorial basis

We then have that:

 $f(X) \sim \text{Geo}\left(\frac{\theta}{\theta+\tau}\right) \quad g(X) \mid f(X) \sim \text{Gamma}\left(1+f(X), \theta+\tau\right)$ When $\tau \approx \theta$, the most information is contained in f(X). As $\tau \to 0$ or $\tau \to \infty, g(X) | f(X) \xrightarrow{d} X.$

Selective Inference

We primarily focus on the use of data fission for (potentially high dimensional) model selection and inference.

Assuming that $P_X(\theta)$ is known up to unknown parameter of interest θ_A data fissions smoothly trades off Fisher information between selection and inference by varying τ .

For "weak version" For "strong version" $\mathbb{I}_{X}(\theta) = \mathbb{I}_{f(X)}(\theta) + E \left| \mathbb{I}_{g(X)|f(X)}(\theta) \right|$ $\mathbb{I}_{X}(\theta) = \mathbb{I}_{f(X)}(\theta) + \mathbb{I}_{g(X)}(\theta)$

Form rejection set adaptively using BH, AdaPT (Lei and Fithian '18), or STAR (Lei et al. '20) procedures.

Simulation results

We assume $x_i \sim N(\mu_i, 1)$ with $\mu_i = 0$ for nulls and $\mu_i = 2$ for nulls (arranged in a circle). After forming rejection set (\mathscr{R}) from fissioned data (using same Gaussian decomposition as above), we:

Form $1 - \alpha$ CI: $\sum_{i\in\mathscr{R}}g(y_i)$

 $\bar{\mu} = \frac{1}{|\mathcal{R}|} \sum_{i \in \mathcal{R}} \mu_i$

...to cover:

Example rejection regions, with and without data fission for $\tau = 0.1$

Varying τ shifts information between selection and inference steps, while controlling FDR.

	factorial basis which is a set of functions whose discrete derivatives are constant for adjacent design points up to order $k - 1$	$\hat{f}_0 = A(A^T A)^{-1} A^T Y$
 	Use $f(Y)$ to select basis A	Use $g(Y)$ to conduct inference
; ; ; [Forming confidence intervals	
 	Target parameter is the projected mean:	$\mu^{\star}(A) = A(A^{T}A)^{-1}A^{T}\mu$ where $\mu = (f_{0}(1), \dots, f_{0}(n))^{T}$
 	Pointwise Cls: $\mathbb{P}(\mu^*(A)_i \notin Cl(\mu^*)_i) \leq \alpha$ for all i.	Uniform Cls: $\mathbb{P}(\exists i \in [n] : \mu^*(A) \notin \mathbb{C}[(\mu^*))) \leq \alpha$
		$(-i) \subset [ii] : pi (ii)_l \neq O(pi j_l) \geq 0$

The above construction will control the FCR (for pointwise CIs) or simultaneous type I error rate (for uniform CIs). To test this procedure, we run it on a real data example. For an astronomical object of interest, we model the coated flux $f(\lambda)$ as a function of wavelengths λ (Politsch et al. (2020b).

Data fission appears to model the underlying trend well, while still allowing for enough information to construct tight confidence intervals