
Problem! Even if the distribution of  is known, it is unlikely 
that  is actually a linear combination of the selected 
covariates for realistic selection rules.  

yi
μi

We assume  with  for nulls and  for nulls 
(arranged in a circle). After forming rejection set ( ) from fissioned 
data (using same Gaussian decomposition as above), we: 

xi ∼ N(μi,1) μi = 0 μi = 2
ℛ

We then have that:
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Interactive Hypothesis Testing

We simulate a small dataset ( , ) with a single high 
leverage point and repeat the data fission procedure for  trials, 
selecting a model with LASSO. We compare data fission along with 
data splitting, and reusing the full dataset for both selection and 
inference (“double dipping”).

n = 20 p = 16
500

Data fission: splitting a single data point
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Introduction
Suppose we observe data with a known distribution, up to an 
unknown variable of interest : .  

We explore decompositions of  into  and  such that: 

1.  is not sufficient to reconstruct  by itself 

2. There exists a function  such that  

3. One of the following two properties holds: 

‣  with known marginal distributions (“strong version”) 

‣  and  have known and tractable distributions (“weak 
version”) 

θ X ∼ PX(θ)

X f (X ) g(X )

f (X ) X

h h( f (X ), g(X )) = X

f (X ) ⊥ g(X )

f (X ) g(X ) | f (X )

Conjugate Prior “Reversal”
Bayesian Inference: p(θ |X )

Posterior

∝ p(X |θ)

Data

p(θ)
⏟
Prior

“Reverse” the prior to 
accomplish data fission 

p(X |Z )

Dataset 2

∝ p(Z |X )

Dataset 1

p(X )
⏟

Original Data

Is  conjugate to some 
other distribution ?

X ∼ PX(θ)
PZ

Then draw Z ∼ PZ(X )

Selective Inference

Linear Regression

Known marginals for 
exponential family 
distributions

f(X) := Z g(X) := X
Distribution of 

 known from 
Bayesian inference
g(X ) | f (X )

Need more information for selection? Draw  and let Z1, . . . . , ZB
.f (X ) := (Z1, . . . , ZB)

Randomization with conjugacy
The exponential distribution is conjugate prior to the Poisson 
distribution. X ∼ Exp(θ)

f(X) ∼ Pois(τX) g(X ) := X

g(X ) | f (X ) ∼ Gamma (1 + f (X ), θ + τ)f (X ) ∼ Geo ( θ
θ + τ )

Misspecified  GLMs

When , the most information is contained in . As  or 
, . 
τ ≈ θ f (X ) τ → 0

τ → ∞ g(X ) | f (X ) d→ X

Additive randomization

Consider observing . We can then draw  and 
randomize by:

X ∼ N(θ, σ2) Z ∼ N(0,σ2)

X ∼ N(θ, σ2)

⊥ ∼ N(θ, (1 + τ−2)σ2

g(X ) := X −
1
τ

Z

As  increases, more information gets allocated to  and less 
information gets allocated to .

τ f (X )
g(X )

Alternatively, we can use conditional rather than additive 
randomization and then choosing a a :τ ∈ (0,1)

X ∼ Pois(θ)

When ,  and  are roughly comparable. As , . As 

, .

τ =
1
2

f (X ) g(X ) τ → 0 g(X ) d→ X

τ → 1 f (X ) d→ X

f(X) ∼ Bin(X, τ)
∼ Pois(τθ)

g(X ) := X − f(X )
∼ Pois ((1 − τ)θ)⊥

Conditional randomization

We primarily focus on the use of data fission for (potentially high 
dimensional) model selection and inference.  

Full Dataset (X)

Use  for 
inference

P (g(X ) | f (X ))
Randomize dataset 

Reveal full data at 
inference step 

Information splitting

Assuming that  is known up to unknown parameter of interest , 
data fissions smoothly trades off  Fisher information between 
selection and inference by varying .

PX(θ) θ

τ

𝕀X(θ) = 𝕀f(X)(θ) + E [𝕀g(X)| f(X)(θ)] 𝕀X(θ) = 𝕀f(X)(θ) + 𝕀g(X)(θ)
For “weak version” For “strong version”

Target Parameter: 

Y = μ + ϵ with ϵ = (ϵ1, . . . , ϵn)T ∼ N(0,σ2In)
where  is known and  is unknown σ2 μ = E[Y |X ] ∈ ℝn

f(X) := X + τZ
∼ N(θ, (1 + τ2)σ2

Use  to 
select a model 

 and 
corresponding design 
matrix  

f (Y ) := Y + τZ

M ⊆ [p]

XM

Use  to conduct 
inference on 

g(Y )

̂β (M ) = argminβ̃ g(Y ) − XM β̃
2

= (XT
M XM)−1XT

Mg(Y )

We assume that  is the dependent variable and  is a 
vector of features with corresponding design matrix . 

yi xi ∈ ℝp

X ∈ ℝn×p

β*(M ) = argminβ̃E [ Y − XM β̃
2] = (XT

MXM)−1XT
M μ

Forming confidence intervals

Why not data splitting?

̂β(M) ∼ N (β⋆(M), (1 + τ−2)σ2(XT
MXM)−1)

Form  confidence 
intervals as: 

1 − α ̂β k(M ) ± zα/2 (1 + τ−2)σ2(XT
M XM)−1

kk

Unknown ?σ
If there exists , calculate this before 
fissioning the data and use throughout—-all 
guarantees above still hold asymptotically. 

̂σ
p

→ σ

Consider a dataset with low  and a 
handful of high leverage points. 

Data splitting cannot allocate this 
information to both datasets, so 
information tradeoff is not “smooth”.

n
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Data fission allows 
the information in 
that single point 
to be “split” 
evenly across  
and .

f (X )
g(X )

Splitting and fission 
both control FCR but 
fission allows for 
tighter confidence 
intervals. Double 
dipping violates FCR 
control.

Data fission also 
enables improved 
power/precision at 
the selection stage 
when using LASSO 
for variable selection.

Selective Inference for

Full Dataset (X)

g(X )f(X )

-values ( )p p1, . . . , pn

g(pi) = min(pi,1 − pi)

Use for CI construction on 
rejection set

Form rejection set adaptively using BH, AdaPT (Lei and Fithian 
’18),  or STAR (Lei et al. ’20) procedures.

μ̄ =
1

|ℛ | ∑
i∈ℛ

μi

Form  CI:1 − α
∑i∈ℛ g(yi)

|ℛ |
± zα/2σ

1 + τ−2

|ℛ |

…to cover:

Simulation results
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Varying  shifts information between selection and inference steps, 
while controlling FDR.  

τ

Fission for Poisson regression
We use the same simulation setup as linear regression, but now with a 
Poisson-distributed response. 
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control FCR but fission allows 
for tighter confidence 
intervals. 
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… and also enables 
improved power/
precision at inference 
stage when using 
LASSO for variable 

We observe a time series 
 where  and 

 is not assumed to belong to any 
model class. Trend filtering estimate 

 by constructing a piecewise linear 
function as: 

yt = f0(t) + ϵt ϵt ∼ N(0,σ2)
f0

̂f0

̂f0 = argminx∈ℝn
1
2

Y − x
2
2 + λ (xt+1 − xt) − (xt − xt−1) 1

where  is a tuning 
parameter 

λ

Equivalently, we can conceptualize trend filtering in two stages: 

Stage 1: Knot Selection
The kink points at which  
switches direction are called 
knots

̂f0

A specific set of knots 
implicitly defines a falling 
factorial basis which is a set of 
functions whose discrete 
derivatives are constant for 
adjacent design points up to 
order 

t1, . . . , tr

k − 1

Stage 2: Minimization
Denote  to be a matrix with 
entries corresponding to the 
selected falling factorial basis 

A

̂f0 = A(AT A)−1ATY

Use  to select basis f (Y ) A Use  to conduct inferenceg(Y )

Forming confidence intervals

Target parameter is the 
projected  mean:

μ⋆(A) = A(AT A)−1ATμ
μ = ( f0(1), . . . . , f0(n))T where 

Pointwise CIs:
 for all i.  

Can be constructed exactly the 
same as in the linear regression 
example

ℙ(μ⋆(A)i ∉ CI(μ⋆)i) ≤ α
Uniform CIs:

 

Using Koenker (2011) for 
construction methodology (see 
arxiv preprint for details).

ℙ(∃i ∈ [n] : μ⋆(A)i ∉ CI(μ⋆)i) ≤ α

The above construction will control the FCR (for pointwise CIs) or 
simultaneous type I error rate (for uniform CIs). To test this procedure, 
we run it on a real data example. For an astronomical object of interest, 
we model the coated flux  as a function of wavelengths  (Politsch et 
al. (2020b).  

f (λ) λ

Data fission appears 
to model the 
underlying trend well, 
while still allowing for 
enough information to 
construct tight 
confidence intervals 

Use any procedure to select 
a model from  f (X )

Draw  Z ∼ N(0,σ2)

h(pi) = 2𝕀 (pi >
1
2 )

Example rejection regions, with and without 
data fission for  τ = 0.1

AdaPT (full): AdaPT (fission):

Trend Filtering

We assume that  follows some distribution in the exponential 
dispersion family and attempt to model  through 
covariates  under the assumption that   for 
some known link function . 

yi
μi := E[yi |xi]

xi ∈ ℝp m(μi) = βT xi
m

Assumption: The analyst fissions the data such that
 for all . g(yi) ⊥ g(yk) |X, f (Y ) i ≠ k

Solution

Use  to select a model  which induces a quasi-
likelihood function on g(Y), for some working model : 

 

f (Y ) M ⊆ [p]
p

Ln :=
n

∑
i=1

log p(g(yi) |β, f (Y ), XM),

Denote  to be the empirical maximizer of  ̂βn(M ) Ln

Target parameter now is the KL minimizer between the 
working model and true distribution : q

β⋆
n (M ) = argminβDKL (

n

∏
i=1

q(g(yi) |X, f (Y )) | |
n

∏
i=1

p(g(yi) |β, f (Y ), XM))
Under mild regularity conditions (Fahrmeir 1990), 

 and asymptotically conservative CIs can 
be constructed (see arxiv preprint for details).

̂βn(M )
p

→ β⋆
n (M )
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