
Ordinary Cross Validation Approach 

• Select a subset of nodes . 

• Train  by excluding these nodes and 
running STE 

• Denote  as the average of fitted values 
across adjacent nodes for each . 

• Evaluate  performance using held out 

I ⊆ V
̂β−I

̂βI
i ∈ I

̂βI

• We consider estimating a structural trend as a running example to consider 
across two applications: cross-validation and post-selection inference.  

̂μ := argminβ∈ℝn ℓ(Y, β)

Loss

+ D(β)
⏟

PenaltyForming a penalty: 

• We consider penalties of the form   or . 

•  and consists of one row per edge 

                

D(β) := λ Δ(k+1)β
1

D(β) := λ Δ(k+1)β
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Δ(1) ∈ {−1,0,1}n×p
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, …0) Δ(k+1) = {(Δ(1))⊤ Δ(k) = L
k + 1

2  for odd k

Δ(1)Δ(k) = Δ(1)L
k
2  for even k
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• We observe a graph  with a known vertex ( ) and edge ( ) set, alongside 
observations ( ). Let , where  and  is a mean 0 random variable. 

• If an analyst needs to select a model or tune hyper parameters over the graph, it may be useful 
to divide the data into multiple independent copies. However, because the data is not iid, 
sample splitting is not available.  

𝒢 = (V, E, Y ) V E
Y yi = μi + ϵi μi = E[yi] ϵi

• We use external randomization to create  
independent copies of the graph  with 
corresponding observations , such that:  

1.  has the same vertex and edge set as . 

2. Taken together, the individual datasets recover 
the original data  in the sense that there exists 
a known deterministic function  such that 

. 

3. The information contained in  is divided across 
 in any proportion desired.  

m
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𝒢 = h (𝒢1, …, 𝒢m)
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Graph Fission in P1 Regime

• We leverage techniques called Data Fission (Leiner et al., 2023), and Data Thinning (Neufeld et 
al., 2022) to decompose the graph into multiple copies.  

Desiderata: 
•  for some known 

function  

•  are all mutually 
independent 

𝔼[Y𝒢j] = f (μ)
f

Y𝒢1, . . . , Y𝒢m

Convolution Closed Definition (Joe, 1996) 
• Let  be a distribution indexed by a parameter  

• Drawing  and  independently , then  is 
convolution-closed, if . 

Fθ θ

X′ ∼ Fθ1
X′ ′ ∼ Fθ2

F
X′ + X′ ′ ∼ Fθ1+θ2

Generic Formulation (Neufeld et al., 2022)

Motivation

Choose  such that τ1, . . . τm

m

∑
i=1

τi = 1
Let  be  the joint distribution of 

, 

Gθ1,...,θm

(Y𝒢1, . . . , Y𝒢1) |
m

∑
j=1

Y𝒢i
= Y

Example: Gaussian Data 
• Assume  

• Draw  from the distribution  

yi ∼ N(μi, σ2)

y𝒢1
i , . . . , y𝒢m

i

• Marginally, , all mutually 
independent. 

y𝒢j
i ∼ N(μi, mσ2)

Example: Poisson Data 
• Assume  

• Draw  from the distribution  

 

yi ∼ Pois(μi)

y𝒢1
i , . . . , y𝒢m

i

Multinomial (yi, ( 1
m , . . . , 1

m ))
• Marginally, , all mutually 

independent. 
y𝒢j

i ∼ Pois ( μi

m )

For  convolution-closed, draw  

Result:  are then mutually independent, with  ,
 

Y ∼ Fθ Y𝒢1, . . . , Y𝒢m ∼ Gτ1θ,...,τmθ

Y𝒢1, . . . , Y𝒢m Y𝒢i ∼ Fτiθ 𝔼 [Y𝒢i] = τiμ
𝔼 [Y𝒢i] = τiμ

Assume  and draw yi ∼ N(μ, σ2In) Z ∼ N(0,σ2
0 In)

Graph Fission in P2 Regime

• The decomposition rules in the P1 Regime are clean, but sometimes require knowledge of a 
nuisance parameter (e.g.  in the Gaussian case) which may be inconvenient.  σ2

We create two synthetic graphs such 
that  

• The law of  is known and 
tractable. 

• There exists a function  such that 
.

Y𝒢1, Y𝒢2

Y𝒢2 |Y𝒢1

h
𝒢 = h(𝒢1, 𝒢2)

yi ∼ N(μi, σ2)

Example: Gaussian Data 

Y𝒢1 = Y + Z Y𝒢2 = Y
∼ N(μi, σ2 + σ2

0 ) Y |Y𝒢1 ∼ N (μ(1 − τ) + τY𝒢1, σ2(1 − τ)In)
τ :=

σ2

σ2 + σ2
0

Background: Structural Trend Estimation

Row corresponding to edge  

(orientation of -1 and 1 is arbitrary) 

(i, j)
Iterative formula for constructing  Δ(k+1)

k = 0 k = 1 k = 2

 corresponds to a piecewise 
constant trend,  corresponds to 
piecewise linear trend, and  
corresponds to piecewise quadratic 
trends. See left examples when 
square loss is used

k = 0
k = 1

k = 2

Application: Cross Validation

• Consider choosing  in the above structural trend estimation problem. λ

Graph Cross Validation Approach 

• Assume  is convolution-closed and 
we construct  under P1 

Y ∼ Fθ
Y𝒢1, . . . , Y𝒢m

Y𝒢−j := ∑j≠i Y𝒢j

∼ Fθ m − 1
m

Y𝒢j ∼ Fθ 1
m

Use for evaluation Use to train model  

• We vary the size of jumps at breakpoints along with the percentage of active 
nodes (i.e. number of breakpoints) in the graph, and compare graph cross-
validation against ordinary cross-validation.
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• The relative performance 

of graph cross-validation 
(dotted) compared to 
ordinary cross-validation 
(solid) increases with both 
the size of jumps and 
number of breakpoints, 
indicating that less smooth 
trends benefit the most 
from using graph fission to 
tune .λ

Application: Inference after Structural Trend Estimation

• We use graph fission to construct confidence intervals around a fitted trend  when a 
square loss function is used, and . 

̂μ
D(β) := λ Δ(k+1)β

1

𝒢 𝒢sel

𝒢inf

Use to select a basis B and choose 
inferential target ηT μ := eT

j B(BTB)−1BTμ

Use for inference 

Step 1: Basis Selection 

Fit  on  for some choice of  ̂μ 𝒢sel k

When  is even: k When  is odd: k
1.  

2. Identify unique values of 
C:  

3.  

4.

C ← L
k
2 ̂β

c1, . . . , cℓ

B ← (L†)
k
2 [cT

1 . . . cT
ℓ ]

B ← [1 B]

1.  

2. Identify corresponding to the non-
zero rows of .  

3. Let  be with only the columns 
corresponding to included 

4.

C ← L
k + 1

2 ̂β

A ⊆ {1,…n}
C

B (L†)
k + 1

2

A

B ← [1 B]

Step 2: Inference 
• In the P1 regime, standard inferential procedures can be used (e.g. least squares), 

because the selection and inference graphs are independent 

• The P2 regime may be necessary when  is a function of unknown nuisance 
parameters. Consider the case where  with  unknown and 

, with . 

• In many cases, consistent estimates of  are not available, introducing further 
complication. In these cases, Theorem 1 can be used for inference.  

Gθ1,...,θm

Y ∼ N(μ, σ2In) σ2

Z ∼ N(0,σ2
0 In) Y𝒢sel = Y + Z

σ2
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Theorem 1 
Assume we have access to  and  such that  . 

Also define: , 

̂σhigh ̂σlow lim
n→∞

ℙ (σ2 ∈ [ ̂σ2
low, ̂σ2

high] ∣ Y𝒢sel) = 1

̂τlow =
̂σ2
low

̂σ2
low + σ2

0
̂τhigh =

̂σ2
high

̂σ2
high + σ2

0

A1 = min{
ηTY − ̂τlowηTY𝒢sel

1 − ̂τlow
,

ηTY − ̂τhighηTY𝒢sel

1 − ̂τhigh
} A2 = max{

ηTY − ̂τlowηTY𝒢sel

1 − ̂τlow
,

ηTY − ̂τhighηTY𝒢sel

1 − ̂τhigh
} .

Then, a conservative asymptotic  CI 
for  I is given by:

1 − α
ηT μ

C1−α := A1 − zα/2

η
2

̂σhigh
1 − ̂τhigh

, A2 + zα/2

η
2

̂σhigh
1 − ̂τhigh

Experimental Results
• We compare confidence intervals constructed by Theorem 1 compared to 

the naive approach that assumes consistent estimates for . 

• Confidence intervals using naive estimates for  undercover, but Theorem 
1 CIs are conservative. 

σ2

σ2
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