Scalable Causal Structure Learning via Amortized Condtional Independence Testing

James Leiner¹, Brian Manzo², Aaditya Ramdas^{1,3}, Wesley Tansey⁴

- ¹Department of Statistics and Data Science, Carnegie Mellon University
- ²Machine Learning Department, Carnegie Mellon University
- ³Department of Statistics, University of Michigan
- ⁴Computational Oncology, Memorial Sloan Kettering Cancer Center

Problem Setup

Suppose we observe graph data containing two sets of nodes, $\mathcal X$ and $\mathcal Y$. Assume that:

- Edges between nodes in the same set can be oriented in any direction

Key Question: Which edges exist between ${\mathcal X}$ and ${\mathcal Y}$?

Motivating Application

Any dataset where groups of variables are known to be ordered in time will have this structure.

We consider a cancer dataset as a running example:

- ${\mathscr X}$ contains binary variables indicating whether certain

Causal Search

In lieu of brute force computation, our strategy consists of two steps:

- 1. Find a function $T_{X_j,Y_k}(\cdot)$ that takes in *S* as an input and outputs a statistic for the hypothesis $X_i \perp Y_k | S, X_{-i}$
- 2. Use discrete optimization to find $\hat{S} := \arg \min_{S \subseteq Y_{-k}} T_{X_j, Y_k}(S)$

Generalized Covariance Measure (GCM)

We focus on the GCM [Shah and Peters, 2018]. This tests whether the expected conditional covariance,

$$\mathbb{E}\left[\mathbb{E}[X_jY_k|S, X_{-j}] - \mathbb{E}[X_j|S, X_{-j}]\mathbb{E}[Y_k|S, X_{-j}]\right]$$

is non-zero. The method's statistic $T^{(n)}$ is computed from well-trained model-based estimates \hat{X}_j and \hat{Y}_k targeting $\mathbb{E}\left[Y_k | S, X_{-j}\right]$ and $\mathbb{E}\left[X_j | S, X_{-j}\right]$.¹

Amortized Predictive Models

Desiderata: train models $\hat{Y}_k(\cdot)$ and $\hat{X}_j(\cdot)$ that takes S as an inputs and outputs conditional expectations to calculate $T^{(n)}(S)$

During training, sample masks X_1 $S := \{Y_k \text{ s.t. } B_k = 1\}$

Results

Dataset: n = 22,352 combining metastatic events with premetastatic tumor mutation info [Nguyen et al., 2022]

Semi-Synthetic Simulations

We posit a logistic model \mathscr{P} relating \mathscr{X} and \mathscr{Y} . For reach patient, we calculate $\pi_i := \mathscr{P}(\mathscr{Y}_i | \mathscr{X}_i)$ as the likelihood of this row under the assumed model.

Construct new dataset by sampling $Cat(\pi_1, \ldots, \pi_n)$. This preserves marginal distributions of \mathscr{X} and \mathscr{Y} while providing ground truth knowledge of causal relationships

The only other causal discovery method that produces *p* -values has inflated type I error, while SCSL is conservative.

SCSL also often has improved performance even when compared to methods not designed for frequentist error

Onu	101.	••										
							F	71 Scor	e			
n	$ \mathcal{X} $	$ \mathcal{Y} $	SCSL	PC-p	\mathbf{PC}	BOSS	CCD	FCI	FGES	GFCI	GRASE	'GRaSP-
												FCI
200	5	5	0.26	0.24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10	10	0.07	0.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	15	0.09	0.07	0.0	0.0	0.0	0.0	0.03	0.03	0.03	0.06
	20	20	0.04	0.04	0.02	0.11	0.02	0.02	0.04	0.04	0.06	0.06
2000	5	5	0.71	0.38	0.0	0.18	0.0	0.0	0.17	0.17	0.0	0.17
	10	10	0.30	0.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	15	0.12	0.10	0.0	0.03	0.0	0.0	0.0		0.0	0.03
	20	20	0.08	0.06	0.0	0.04	0.0	0.0	0.02		0.04	0.04
20,000) 5	5	0.87	0.57	0.95	0.84	0.95	0.82	0.95	0.89	0.84	0.89
	10	10	0.78	0.37	0.29	0.46	0.29	0.06	0.46	0.24	0.38	0.24
	15	15	0.49	0.16		0.15			0.13	0	0.15	0.06
	20	20	0.33	0.06		0.06			0.04	0.02	0.08	

(arXiv: 2310.16626)

- mutations are contained in the primary tumor site
- *Y* contains binary variables indicating whether metastases have developed in secondary locations

Discovering connections of the form $X_j \rightarrow Y_k$ allow us to proactively screen at-risk patients and better understand the progression of the disease.

Causal *p*-values

Under certain assumptions, a hypothesis that an edge is present between nodes X_j and Y_k . is reducible to testing for conditional independence between X_j and Y_k given other sets of nodes on the graph.

Proposition 1

Assume a graph $\mathscr{G} := (\mathscr{X}, \mathscr{Y})$ satisfies the global directed Markov property and the probability distribution is d-separation faithful.

Assume no element can be directed from any element in $\mathcal Y$ to any element in $\mathcal X$.

Then, there is an edge between $X_j \in \mathcal{X}$ and $Y_k \in \mathcal{Y}$ if and only if X_j and Y_k are conditionally dependent given $S \cup X_{-j}$ for all $S \subseteq Y_{-k}$.

When using model, manually let $B_k = 0$ for all $Y_k \notin S$ (given arbitrary choice of S).

Training process mimics process of an end user arbitrarily evaluating different conditioning subsets.

Gumbel-Softmax Optimization

Desiderata: Learn $\arg\min_{\theta_{1},...,\theta_{p}} \mathbb{E}[T_{n}(S)]$ where $1_{Y_{k} \in S} \sim \text{Ber}(\theta_{k})$ Replace $\frac{\partial T_{n}}{\partial S} \approx \frac{\partial T_{n}}{\partial \tilde{S}}$ to enable back propagation. \tilde{S} is a continuous relaxation of S using the Gumbel-Softmax trick [Jang et al., 2017]. $\tilde{S}_{i} = \frac{\exp\left((\log \theta_{i} + g_{i1})/\tau\right)}{\exp\left((\log \theta_{i} + g_{i1})/\tau\right) + \exp\left((\log(1 - \theta_{i}) + g_{i2})/\tau\right)}$ $g_{i1}, g_{i2} \sim \text{Gumbel}(0,1) \quad \tau \to 0$ approximates discrete distribution θ_{1} g_{11} g_{12} θ_{p} g_{p1} g_{p2}

$$\theta_{1} \qquad g_{11} \qquad g_{12} \qquad \theta_{p} \qquad g_{p1} \qquad g_{p2}$$

$$\tilde{S}_{1} \qquad Conditioning Set \\ (S) \qquad \tilde{S}_{p} \qquad \tilde{S}_{p}$$

$$\hat{\mathbb{E}}[Y_{k}|S, X_{-j}] \qquad \tilde{\mathbb{E}}[X_{j}|S, X_{-j}]$$

∧j,**1** k

Real Data Results

The original study identified 161 discoveries rejected using associative *p*-values with a Benjamini-Hochberg (BH) adjustment. Only 6 discoveries remain when substituting causal *p*-values with the same BH adjustment.

			p-value			
Primary	Gene	Secondary	Causal	Marginal		
Breast	CDH1	Lung	$3.5 imes 10^{-7}$	$2.3 imes 10^{-18}$		
Colon	KRAS	Lung	1.4×10^{-5}	$2.6 imes 10^{-8}$		
Liver	TERT	Liver	$2.3 imes 10^{-5}$	$3.4 imes 10^{-8}$		
Lung	EGFR	CNS (Brain)	$2.8 imes 10^{-5}$	$3.3 imes 10^{-11}$		
Pancreas	KRAS	Lymph	2.2×10^{-16}	4.5×10^{-31}		
Pancreas	TP53	Lymph	1.1×10^{-8}	1.7×10^{-11}		

Footnotes

1: Letting $R_i = \left(X_j^i - \widehat{X}_j^i\right) \left(Y_k^i - \widehat{Y}_k^i\right)$, then under the null (and given appropriate regularity conditions ensuring fast convergence of the estimated conditional means), $T_{X_j,Y_k}^{(n)} := \frac{\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^n R_i}{\left(\frac{1}{n} \sum_{i=1}^n R_i^2 - \left(\frac{1}{n} \sum_{r=1}^n R_r\right)^2\right)^{1/2}} \approx N(0,1)$