
Real Data Results  

The original study identified 161 discoveries rejected using 
associative -values with a Benjamini-Hochberg (BH) 
adjustment. Only 6 discoveries remain when substituting 
causal -values with the same BH adjustment.  
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Results Causal SearchProblem Setup

Suppose we observe graph data containing two sets of 
nodes,  and . Assume that: 

‣ No edge can be directed from  to  

‣ Edges between nodes in the same set can be oriented in 
any direction 
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Key Question: Which edges exist between  and ?𝒳 𝒴

Motivating Application 

Any dataset where groups of variables are known to be 
ordered in time will have this structure. 

We consider a cancer dataset as a running example:  

•  contains binary variables indicating whether certain 
mutations are contained in the primary tumor site 

•  contains binary variables indicating whether 
metastases have developed in secondary locations 

Discovering connections of the form  allow us to 
proactively screen at-risk patients and better understand 
the progression of the disease.  
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Xj → Yk

Causal -valuesp

Under certain assumptions, a hypothesis that an edge is 
present between nodes  and . is reducible to testing for 
conditional independence between  and  given other 
sets of nodes on the graph.
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Proposition 1 

Assume a graph  satisfies the global directed 
Markov property and the probability distribution is d-
separation faithful.  

Assume no element can be directed from any element in 
 to any element in . 

Then, there is an edge between  and  if and 
only if  and  are conditionally dependent given  
for all .  

𝒢 := (𝒳, 𝒴)

𝒴 𝒳

Xj ∈ 𝒳 Yk ∈ 𝒴
Xj Yk S ∪ X−j
S ⊆ Y−k

:  is 
absent

H0 Xj → Yk : There exists such 
that 

H0 S ⊆ Y−k
Xj ⊥ Yk |S, X−j

:  is 
absent

H0 Xj → Yk :  for all H1 Xj ⊥ Yk |S, X−j
S ⊆ Y−k

This implies that…  pXj→Yk
≤ max

S⊆Y−k

pXj⊥Yk|S,X−j

In lieu of brute force computation, our strategy consists of 
two steps: 

1. Find a function  that takes in  as an input and 
outputs a statistic for the hypothesis   

2. Use discrete optimization to find  

TXj,Yk
( ⋅ ) S

Xj ⊥ Yk |S, X−j

̂S := arg min
S⊆Y−k

TXj,Yk
(S )

Amortized Predictive Models

Gumbel-Softmax Optimization

?

Generalized Covariance Measure (GCM) 

We focus on the GCM [Shah and Peters, 2018]. This tests 
whether the expected conditional covariance,  

 

is non-zero. The method’s statistic  is computed from 
well-trained model-based estimates  and  targeting 

 and .1 

𝔼 [𝔼[XjYk |S, X−j] − 𝔼[Xj |S, X−j]𝔼[Yk |S, X−j]]
T (n)

X̂j
̂Yk

𝔼 [Yk |S, X−j] 𝔼 [Xj |S, X−j]

So   can be bounded by an exhaustive computation 
of conditional independence tests over all possible 
conditioning subsets, but this is not always feasible.
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ML Model 

ℓ(Yk, ̂Yk)

̂Yk ≈ 𝔼 [Yk |S, X−k]

During 
training, 
sample  

masks  

Bk ∼ Ber(p)

S := {Yk s.t. Bk = 1}

When using model, manually let  for all  
(given arbitrary choice of ). 

Training process mimics process of an end user arbitrarily 
evaluating different conditioning subsets. 

Bk = 0 Yk ∉ S
S

Desiderata: train models  and  that takes  as 
an inputs and outputs conditional expectations to 
calculate 

̂Yk( ⋅ ) X̂j( ⋅ ) S

T (n)(S )

1: Letting  , then under the null (and 
given appropriate regularity conditions ensuring fast 
convergence of the estimated conditional means), 

 

Ri = (Xi
j − ̂X i

j) (Yi
k − ̂Yi

k)

T (n)
Xj,Yk

:=
n ⋅ 1

n ∑n
i=1 Ri

( 1
n ∑n

i=1 R2
i − ( 1

n ∑n
r=1 Rr)

2)
1/2 ≈ N(0,1)

Link to paper 

(arXiv: 2310.16626)

Desiderata: Learn  where arg min
θ1,...,θp

𝔼 [Tn(S )] 1Yk∈S ∼ Ber(θk)

Replace   to enable back propagation.  is a continuous 

relaxation of  using the Gumbel-Softmax trick [Jang et al., 2017]. 
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S̃i =
exp ((log θi + gi1)/τ)

exp ((log θi + gi1)/τ) + exp ((log(1 − θi) + gi2)/τ)
gi1, gi2 ∼ Gumbel(0,1)  approximates discrete distributionτ → 0
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Dataset:  combining metastatic events with pre-
metastatic tumor mutation info [Nguyen et al., 2022] 

n = 22,352

Footnotes

Semi-Synthetic Simulations 

We posit a logistic model  relating  and . For reach 
patient, we calculate  as the likelihood of 
this row under the assumed model. 

Construct new dataset by sampling . This 
preserves marginal distributions of  and  while 
providing ground truth knowledge of causal relationships  

𝒫 𝒳 𝒴
πi := 𝒫(𝒴i |𝒳i)

Cat(π1, . . . πn)
𝒳 𝒴

The only other causal 
discovery method 
that produces 
-values has inflated 
type I error, while 
SCSL is conservative. 
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SCSL also often has improved performance even when 
compared to methods not designed for frequentist error 
control… 
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