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Consider a causal graph with two sets 
of nodes,  and 𝒳 𝒴
Assume that  
predates   

The arrow of time 
implies that…  
‣No edge can be 
directed from  
to 
‣Edges between 
nodes in the same 
set can be 
oriented in any 
direction

𝒳
𝒴

𝒳
𝒴

Key Question: Which edges exist between  and ?𝒳 𝒴
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A first step is to reduce the question to 
one of conditional independence relations

Assume the 
graph… 
‣ satisfies the 
global directed 
Markov property 
‣ is d-separation 
faithful
‣does not contain 
latent 
confounders

 is absentXj → Yk
 such 

that 
∃S ⊆ Y−k

Xj ⊥ Yk |S, X−j

⟺

 is presentXj → Yk   for 
all 

Xj ⊥ Yk |S, X−j
S ⊆ Y−k

⟺



Our goal is to learn edge-specific 
-values for the graph

p

Key Inequality  pXj→Yk
≤ max

S⊆Y−k

pXj⊥Yk|S,X−j

Exhaustive querying of all CI relationships is valid but may 
not be computationally feasible for even moderately sized 
graphs…

Prior work on causal discovery either…  
‣Searches for a graph (e.g. by maximizing a score function) 
but does not produce -values with frequentist guarantees 

‣Outputs edge-specific -values but only under the 
assumption of zero Type II error (i.e. no erroneous edge 
deletions) [Strobl et al., 2019] 

p
p



We tackle this problem in two steps 

1. Find a function  that takes in  as an 
input and outputs a statistic for the hypothesis 

  

2. Use discrete optimization to find 

TXj,Yk
( ⋅ ) S

Xj ⊥ Yk |S, X−j

̂S := arg min
S⊆Y−k

TXj,Yk
(S)



Generalized Covariance Measure
Target Estimand: 𝔼 [𝔼[XjYk |S, X−j] − 𝔼[Xj |S, X−j]𝔼[Yk |S, X−j]]

(expected conditional covariance)

Inputs: Flexible ML estimates 

 targeting  

 targeting 

X̂j 𝔼 [Xj |S, X−j]
̂Yk 𝔼 [Yk |S, X−j]

Test statistic 
Let 

If ML estimates converge sufficiently fast, then under the null (and appropriate regularity 
conditions), 

 

(won’t have power against alternatives that are dependent but with 0 expected conditional covariance) 

Ri = (Xi
j − ̂X i

j) (Yi
k − ̂Yi

k)

T (n)
Xj,Yk

:=
n ⋅ 1

n ∑n
i=1 Ri

( 1
n ∑n

i=1 R2
i − ( 1

n ∑n
r=1 Rr)

2)
1/2 ≈ N(0,1)

Shah and Peters [2018]



Using the GCM converts the CI testing 
problem to one of conditional mean estimation

Desiderata: train models  and  that target  and X̂j( ⋅ ) ̂Yk( ⋅ ) 𝔼 [Xj |S, X−j] 𝔼 [Yk |S, X−j]
Intuitively, we need to “hide” some pieces of information during training to mask out 
Yk ∉ S

When using model, manually let  for all  (given arbitrary choice of ) 

Training process mimics process of an end user arbitrarily evaluating different 
conditioning subsets

Bk = 1 Yk ∈ S S

X1

Xn

Y1

Yp

B1

Bp

×

×

ML Model 

ℓ(Yk, ̂Yk)

̂Yk ≈ 𝔼 [Yk |S, X−k]

During training, sample masks 
Bk ∼ Ber(p)
S := {Yk s.t. Bk = 1}

Backpropagation



Gumbel-Softmax Optimization
Desiderata: Learn  where arg min

θ1,...,θp

𝔼 [Tn(S)] 1Yk∈S ∼ Ber(θk)

Jang et al.  [2017]

To enable back propagation, we replace  where  is a 

continuous relaxation of 

∂Tn

∂S
≈

∂Tn

∂S̃
S̃

S

S̃i =
exp ((log θi + gi1)/τ)

exp ((log θi + gi1)/τ) + exp ((log(1 − θi) + gi2)/τ)
gi1, gi2 ∼ Gumbel(0,1)

 approximates a discrete distributionτ → 0



We can now learn the conditioning 
set with gradient descent

θ1

S̃1 S̃p

g11 g12 θp gp1

�̂�[Yk |S, X−j] �̂�[Xj |S, X−j]

T(n)
Xj,Yk

(S)

gp2

Test statistic

Parameter to estimate

Use  for forward pass 
Use  for backward pass

S
S̃

Deterministic node 
Random node

Conditioning Set ( )S



Results



We consider a cancer dataset as a 
motivating example

Dataset [Nguyen et al., 2022]  patients where

•  contains binary variables indicating whether certain mutations are 
contained in the primary tumor site

•  contains binary variables indicating whether metastases have 
developed in secondary locations

n = 22,352
𝒳

𝒴

Discovering connections of the form  allow us to 
proactively screen at-risk patients and better understand the 
progression of the disease. 

Xj → Yk



We test using semi-synthetic 
data…

1. Posit a logistic model  relating  and . 
2. For reach patient, we calculate  as the 

likelihood of this row under the assumed model.
3. Construct new dataset by sampling . 
4. This preserves marginal distributions of  and  while 

providing ground truth knowledge of causal relationship

𝒫 𝒳 𝒴
πi := 𝒫(𝒴i |𝒳i)

Cat(π1, . . . πn)
𝒳 𝒴



SCSL controls Type I error and has 
high power

The only other causal 
discovery method that 
produces -values has 
inflated type I error, while 
SCSL is conservative.

p

SCSL also often has improved 
performance even when 
compared to methods not 
designed for frequentist error 
control…



On real data, the method reveals interesting 
connections between mutations and metastases

In the original study, 161 discoveries were identified using 
associative -values with a Benjamini-Hochberg (BH) 
adjustment

p

Only 6 discoveries remain when substituting causal -values 
with the same BH adjustment. 

p



Thank you!


